Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis PDF

Author: Jinghua Guo

Publisher: McGraw Hill Professional

Published: 2012-01-27

Total Pages: 207

ISBN-13: 0071701273

DOWNLOAD EBOOK →

State-of-the-art renewable energy science research and applications Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides. This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all addressed. This comprehensive resource introduces soft x-ray absorption (XAS), soft x-ray emission spectroscopy (XES), and resonant inelastic soft x-ray scattering (RIXS), followed by a description of instrumentation. COVERAGE INCLUDES: * Hydrogen generation: electrochemistry and photoelectrolysis * Photocatalytic reactions, oxidation, and reduction * Transition metal oxides * Crystal structure and electronic structure * Optical properties and light absorption * Impurity, dopants, and defects * Surface and morphology * Soft x-ray spectroscopy and electronic structure

Light, Water, Hydrogen

Light, Water, Hydrogen PDF

Author: CRAIG GRIMES

Publisher: Springer Science & Business Media

Published: 2007-12-03

Total Pages: 561

ISBN-13: 0387682384

DOWNLOAD EBOOK →

This book covers the field of solar production of hydrogen by water photo-splitting (photoelectrolysis) using semiconductor photoanodes. The emphasis of the discussion is on the use of nanotechnology in the field. The theories behind photocatalysis and photoelectrochemical processes responsible for hydrogen production are given in detail. This provides a state-of-the-art review of the semiconductor materials and methods used for improving the efficiency of the processes. The book also gives an account of the techniques used for making the nanostructures.

Photoelectrochemical Hydrogen Generation

Photoelectrochemical Hydrogen Generation PDF

Author: Praveen Kumar

Publisher: Springer Nature

Published: 2022-01-19

Total Pages: 301

ISBN-13: 9811672857

DOWNLOAD EBOOK →

This book describes the hydrogen fuel generation from water via photoelectrochemical process. It elaborates the theory and fundamental concepts of photoelectrochemistry to understand the photoelectrochemical process for water splitting to generate hydrogen fuel. The book further deliberates about the hydrogen as a futuristic chemical fuel to store solar energy in the form of chemical bonds and also as a renewable alternative to fossil fuels. The book establishes the need for hydrogen fuel and discusses the standards and practices used for solar driven photoelectrochemical water splitting. It also discusses the current and future status of the nanomaterials as efficient photoelectrodes for solar photoelectrochemical water splitting. The book will be of interest to the researchers, students, faculty, scientists, engineers, and technologists working in the domain of material science, energy harvesting, energy conversion, photo electrochemistry, nanomaterials for photo-electrochemical (PEC) cell, etc.

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis PDF

Author: Jinghua Guo

Publisher: McGraw Hill Professional

Published: 2011-12-30

Total Pages: 207

ISBN-13: 0071701265

DOWNLOAD EBOOK →

State-of-the-art renewable energy science research and applications Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides. This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all addressed. This comprehensive resource introduces soft x-ray absorption (XAS), soft x-ray emission spectroscopy (XES), and resonant inelastic soft x-ray scattering (RIXS), followed by a description of instrumentation. COVERAGE INCLUDES: * Hydrogen generation: electrochemistry and photoelectrolysis * Photocatalytic reactions, oxidation, and reduction * Transition metal oxides * Crystal structure and electronic structure * Optical properties and light absorption * Impurity, dopants, and defects * Surface and morphology * Soft x-ray spectroscopy and electronic structure

Photoelectrochemical Solar Cells

Photoelectrochemical Solar Cells PDF

Author: Nurdan Demirci Sankir

Publisher: John Wiley & Sons

Published: 2018-11-30

Total Pages: 480

ISBN-13: 1119459966

DOWNLOAD EBOOK →

This book provides an overall view of the photoelectrochemical systems for solar hydrogen generation, and new and novel materials for photoelectrochemical solar cell applications. The book is organized in three parts. General concepts and photoelectrochemical systems are covered in Part I. Part II is devoted to photoactive materials for solar hydrogen generation. Main focus of the last part is the photoelectrochemical related systems. This part provides a diverse information about the implementation of multi-junctional solar cells in solar fuel generation systems, dye-sensitized solar hydrogen production and photocatalytic formation of photoactive semiconductors.

Environmental Photochemistry Part III

Environmental Photochemistry Part III PDF

Author: Detlef W. Bahnemann

Publisher: Springer

Published: 2015-06-23

Total Pages: 346

ISBN-13: 366246795X

DOWNLOAD EBOOK →

This volume builds on the previous two editions, Environmental Photochemistry Part I and Part II, which reflect the diverse range of activities in this highly dynamic research field. The chapters cover fundamental topics, from photocatalyst materials, surface-modified materials, reaction kinetics and reactor modelling, to translational research activities on chemical synthesis, energy conversion and water treatment. The applications of the new generation of LED irradiation sources and spectroscopic methods for elucidating reaction pathways are also covered in detail. This new volume maintains the ethos of the previous editions by further contributing to readers’ understanding of photochemical and photocatalytic processes for environmental applications.

Solar Hydrogen Generation

Solar Hydrogen Generation PDF

Author: Krishnan Rajeshwar

Publisher: Springer Science & Business Media

Published: 2008-02-21

Total Pages: 329

ISBN-13: 0387728104

DOWNLOAD EBOOK →

Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.

Photoelectrochemical Water Splitting

Photoelectrochemical Water Splitting PDF

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2020-04-05

Total Pages: 220

ISBN-13: 1644900734

DOWNLOAD EBOOK →

Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.

Light, Water, Hydrogen

Light, Water, Hydrogen PDF

Author: Craig A Grimes

Publisher:

Published: 2011

Total Pages: 650

ISBN-13: 9781441961471

DOWNLOAD EBOOK →

Light, Water, Hydrogen considers the combination of water and light with a suitable semiconductor to achieve a safe, renewable means for hydrogen generation via photoelectrolysis. Written for users in a wide range of disciplines, this volume is an invaluable resource for graduate students and researchers.

Photoelectrochemical Hydrogen Production

Photoelectrochemical Hydrogen Production PDF

Author: Roel van de Krol

Publisher: Springer Science & Business Media

Published: 2011-11-09

Total Pages: 322

ISBN-13: 146141380X

DOWNLOAD EBOOK →

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.