World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2) PDF

Author:

Publisher: World Scientific

Published: 2018-06-29

Total Pages: 908

ISBN-13: 9813239859

DOWNLOAD EBOOK →

Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, this book provides a comprehensive coverage of the state of the art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 3 & 4)

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 3 & 4) PDF

Author:

Publisher: World Scientific

Published: 2022-04-08

Total Pages: 1144

ISBN-13: 9811240310

DOWNLOAD EBOOK →

Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, World Scientific Handbook of Organic Optoelectronic Devices provides a comprehensive coverage of the state-of-the-art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.

Handbook of Optoelectronics

Handbook of Optoelectronics PDF

Author: John P. Dakin

Publisher: CRC Press

Published: 2017-10-05

Total Pages: 632

ISBN-13: 1351595598

DOWNLOAD EBOOK →

Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.

Organic Electronics

Organic Electronics PDF

Author: Gregor Meller

Publisher: Springer

Published: 2009-12-23

Total Pages: 338

ISBN-13: 3642045383

DOWNLOAD EBOOK →

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.

Optoelectronic Devices and Properties

Optoelectronic Devices and Properties PDF

Author: Oleg Sergiyenko

Publisher: BoD – Books on Demand

Published: 2011-04-19

Total Pages: 678

ISBN-13: 9533072040

DOWNLOAD EBOOK →

Optoelectronic devices impact many areas of society, from simple household appliances and multimedia systems to communications, computing, spatial scanning, optical monitoring, 3D measurements and medical instruments. This is the most complete book about optoelectromechanic systems and semiconductor optoelectronic devices; it provides an accessible, well-organized overview of optoelectronic devices and properties that emphasizes basic principles.

Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices PDF

Author: Beata Luszczynska

Publisher: John Wiley & Sons

Published: 2019-09-16

Total Pages: 686

ISBN-13: 352734442X

DOWNLOAD EBOOK →

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Selected Papers of Kun Huang

Selected Papers of Kun Huang PDF

Author: Kun Huang

Publisher: World Scientific

Published: 2000

Total Pages: 249

ISBN-13: 9810242352

DOWNLOAD EBOOK →

Professor Kun Huang is widely known for his collaboration with Max Born in writing the classic monograph, ?Dynamical Theory of Crystal Lattices?. During his years of active research, he has made many important contributions to solid state physics. The present collection of papers is selected at his own choice as representing his most influential works. Thus one finds included his pioneering work on the interaction of radiation field with polar lattices and the resulting coupled vibration modes (later known as ?polariton?); the systematic development of his theory of radiative and nonradiative multiphonon transition processes associated with lattice relaxation; his early prediction of diffuse X-ray scattering due to crystal defects; and his recent research works on low-dimensional semiconductor structures, etc.Professor Huang has found by his experience that scientists interested in these papers often want to know more particulars underlying the research work (background, motivation and rationale involved etc.). Thus he was led to write a commentary which is published alongside the papers.