Fundamentals of Smart Materials

Fundamentals of Smart Materials PDF

Author: Mohsen Shahinpoor

Publisher: Royal Society of Chemistry

Published: 2020-04-22

Total Pages: 358

ISBN-13: 178262645X

DOWNLOAD EBOOK →

This textbook covers the fundamentals of different functional material systems aimed at advanced undergraduate and postgraduate students. Each chapter includes an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, chemomechanical polymers and self-healing materials.

Smart Materials for Tissue Engineering

Smart Materials for Tissue Engineering PDF

Author: Qun Wang

Publisher: Royal Society of Chemistry

Published: 2017

Total Pages: 715

ISBN-13: 1782624848

DOWNLOAD EBOOK →

In the last couple of decades, research in the area of tissue engineering has witnessed tremendous progress. The focus has been on replacing or facilitating the regeneration of damaged or diseased cell, tissue or organs by applying a biomaterial support system, and a combination of cells and bioactive molecules. In addition new smart materials have been developed which provide opportunities to fabricate, characterize and utilize materials systematically to control cell behaviours and tissue formation by biomimetic topography that closely replicate the natural extracellular matrix. Following on from Smart Materials for Tissue Engineering: Fundamental Principles, this book comprehensively covers the different uses of smart materials in tissues engineering, providing a valuable resource for biochemists, materials scientists and biomedical engineers working in industry and academia.

Electrochromic Smart Materials

Electrochromic Smart Materials PDF

Author: Jian Wei Xu

Publisher: Royal Society of Chemistry

Published: 2019-01-04

Total Pages: 546

ISBN-13: 1788011430

DOWNLOAD EBOOK →

Electrochromic devices have a wide range of applications, including displays, self-dimming mirrors for automobiles, electrochromic e-skins, textiles, and smart windows for energy-efficient buildings. This title covers major topics related to the phenomenon of electrochromism, highlighting a broad range of existing and potential applications of electrochromic materials and devices. Providing a comprehensive overview of the field, it will be of interest to postgraduate students and researchers in both academia and industry interested in smart design, materials science and engineering.

Chemoresponsive Materials

Chemoresponsive Materials PDF

Author: Hans-Jorg Schneider

Publisher: Royal Society of Chemistry

Published: 2015-06-26

Total Pages: 300

ISBN-13: 178262242X

DOWNLOAD EBOOK →

Smart materials stimulated by chemical or biological signals are of interest for their many applications including drug delivery, as well as in new sensors and actuators for environmental monitoring, process and food control, and medicine. In contrast to other books on responsive materials, this volume concentrates on materials which are stimulated by chemical or biological signals. Chemoresponsive Materials introduces the area with chapters covering different responsive material systems including hydrogels, organogels, membranes, thin layers, polymer brushes, chemomechanical and imprinted polymers, nanomaterials, silica particles, as well as carbohydrate- and bio-based systems. Many promising applications are highlighted, with an emphasis on drug delivery, sensors and actuators. With contributions from internationally known experts, the book will appeal to graduate students and researchers in academia, healthcare and industry interested in functional materials and their applications.

Fundamentals of Smart Materials

Fundamentals of Smart Materials PDF

Author: Mohsen Shahinpoor

Publisher: Royal Society of Chemistry

Published: 2020-04-22

Total Pages: 358

ISBN-13: 1788019466

DOWNLOAD EBOOK →

Smart materials are of significant interest and this is the first textbook to provide a comprehensive graduate level view of topics that relate to this field. Fundamentals of Smart Materials consists of a workbook and solutions manual covering the basics of different functional material systems aimed at advanced undergraduate and postgraduate students. Topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, thermochromic materials, chemomechanical polymers and self-healing materials. Each chapter provides an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, the textbook can be adopted by teachers in materials science and engineering, chemistry, physics and chemical engineering.

Smart Materials for Science and Engineering

Smart Materials for Science and Engineering PDF

Author: Upendra Kumar

Publisher: John Wiley & Sons

Published: 2024-05-07

Total Pages: 405

ISBN-13: 1394186460

DOWNLOAD EBOOK →

SMART MATERIALS FOR SCIENCE AND ENGINEERING Smart materials, also known as advanced or creative materials, are described as advanced materials that react intuitively to environmental changes or as materials that can return to their original shape in response to certain stimuli. Smart materials are classified as either active or passive based on their characteristics. There are two types of active materials. The first kind cannot change its characteristics when subjected to outside stimuli, for example photochromatic spectacles that only alter their color when exposed to sunlight. The other, which includes piezoelectric materials, can change one sort of energy (thermal, electrical, chemical, mechanical, or optical) into another. When subjected to external pressure, it can generate an electric charge. As an example, optical fibers can transmit electromagnetic waves. In contrast, passive smart materials can transmit a specific sort of energy. They have some amazing qualities that set them apart from other materials, such as transiency, meaning they can react to different kinds of external stimuli immediately, self-actuation or the capacity to change their appearance and shape, selectivity where the response is divided and expected, directness when the response is limited to the activating event, shape-changing where the material can change its shape to external stimuli, their ability to determine their own health, also known as self-diagnosis, and their ability to self-heal. The ability to synthesize novel materials has substantially progressed thanks to science and technology over the past 20 years. They fall mostly into the following four categories: polymers, ceramics, metals, and smart materials. Among these, smart materials are gaining popularity since they have more uses than conventional materials. Smart materials are unusual substances that have the ability to alter their properties, such as those that can immediately change their phase when placed near a magnet or their shape simply by applying heat. Humanity will be significantly impacted by this new era of smart materials. For instance, some of them can adapt their properties to the environment, some have sensory capabilities, some can repair themselves automatically, and some can degrade themselves. These extraordinary properties of smart materials will have an effect on all facets of civilization. There are many different types of intelligent materials, including magnetorheological materials, electro-rheostat materials, shape memory alloys, piezoelectric materials, and more. This book describes many forms of smart materials and their possible uses in various fields. A literature survey discusses the different types of smart materials, such as based ceramics, polymers, and organic compounds and their needs, advantages, disadvantages, and applications will be comprehensively discussed. A discussion of well-established smart materials including piezoelectric, magnetostrictive, shape memory alloy, electro-rheological fluid, and magnetorheological fluid materials will be discussed with their present prospects.

Smart Materials: Integrated Design, Engineering Approaches, and Potential Applications

Smart Materials: Integrated Design, Engineering Approaches, and Potential Applications PDF

Author: Anca Filimon

Publisher: CRC Press

Published: 2018-07-18

Total Pages: 426

ISBN-13: 1351167944

DOWNLOAD EBOOK →

Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish ‘smart materials’? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design.

Smart Materials for Science and Engineering

Smart Materials for Science and Engineering PDF

Author: Upendra Kumar

Publisher: John Wiley & Sons

Published: 2024-06-05

Total Pages: 405

ISBN-13: 1394185812

DOWNLOAD EBOOK →

SMART MATERIALS FOR SCIENCE AND ENGINEERING Smart materials, also known as advanced or creative materials, are described as advanced materials that react intuitively to environmental changes or as materials that can return to their original shape in response to certain stimuli. Smart materials are classified as either active or passive based on their characteristics. There are two types of active materials. The first kind cannot change its characteristics when subjected to outside stimuli, for example photochromatic spectacles that only alter their color when exposed to sunlight. The other, which includes piezoelectric materials, can change one sort of energy (thermal, electrical, chemical, mechanical, or optical) into another. When subjected to external pressure, it can generate an electric charge. As an example, optical fibers can transmit electromagnetic waves. In contrast, passive smart materials can transmit a specific sort of energy. They have some amazing qualities that set them apart from other materials, such as transiency, meaning they can react to different kinds of external stimuli immediately, self-actuation or the capacity to change their appearance and shape, selectivity where the response is divided and expected, directness when the response is limited to the activating event, shape-changing where the material can change its shape to external stimuli, their ability to determine their own health, also known as self-diagnosis, and their ability to self-heal. The ability to synthesize novel materials has substantially progressed thanks to science and technology over the past 20 years. They fall mostly into the following four categories: polymers, ceramics, metals, and smart materials. Among these, smart materials are gaining popularity since they have more uses than conventional materials. Smart materials are unusual substances that have the ability to alter their properties, such as those that can immediately change their phase when placed near a magnet or their shape simply by applying heat. Humanity will be significantly impacted by this new era of smart materials. For instance, some of them can adapt their properties to the environment, some have sensory capabilities, some can repair themselves automatically, and some can degrade themselves. These extraordinary properties of smart materials will have an effect on all facets of civilization. There are many different types of intelligent materials, including magnetorheological materials, electro-rheostat materials, shape memory alloys, piezoelectric materials, and more. This book describes many forms of smart materials and their possible uses in various fields. A literature survey discusses the different types of smart materials, such as based ceramics, polymers, and organic compounds and their needs, advantages, disadvantages, and applications will be comprehensively discussed. A discussion of well-established smart materials including piezoelectric, magnetostrictive, shape memory alloy, electro-rheological fluid, and magnetorheological fluid materials will be discussed with their present prospects.

Handbook of Smart Materials, Technologies, and Devices

Handbook of Smart Materials, Technologies, and Devices PDF

Author: Chaudhery Mustansar Hussain

Publisher: Springer Nature

Published: 2022-11-09

Total Pages: 2831

ISBN-13: 3030842053

DOWNLOAD EBOOK →

This handbook brings together technical expertise, conceptual background, applications, and societal aspects of Industry 4.0: the evolution of automation and data exchange in fabrication technologies, materials processing, and device manufacturing at both experimental and theoretical model scales. The book assembles all the aspects of Industry 4.0, starting from the emergence of the concept to the consequences of its progression. Drawing on expert contributors from around the world, the volume details the technologies that sparked the fourth revolution and illustrates their characteristics, potential, and methods of use in the industrial and societal domains. In addition, important topics such as ethics, privacy and security are considered in a reality where all data is shared and saved remotely. The collection of contribution serve a very broad audience working in the fields of science and engineering, chemical engineering, materials science, nanotechnology, energy, environment, green chemistry, sustainability, electrical and electronic engineering, solid-state physics, surface science, aerosol technology, chemistry, colloid science, device engineering, and computer technology. This handbook ideal reference libraries in universities and industrial institutions, government and independent institutes, individual research groups and scientists.

Intelligent Materials

Intelligent Materials PDF

Author: Mohsen Shahinpoor

Publisher: Royal Society of Chemistry

Published: 2007-10-31

Total Pages: 532

ISBN-13: 1847558003

DOWNLOAD EBOOK →

From the nanoscale to the macroscopic scale, intelligent materials are triggering a response across both dimensions and scientific disciplines... World class, leading experts in the fields of chemistry, physics and engineering have contributed to Intelligent Materials, highlighting the importance of smart material science in the 21st century. In this exceptional text the expertise of specialists across the globe is drawn upon to present a truly interdisciplinary outline of the topic. Covering both a bottom-up chemical, and top-down engineering approach to the design of intelligent materials the Editors of the book are bridging a vital gap between various scientific authorities. The influence of current research in this field on future technology is undisputed and potential applications of intelligent materials span nanoscience, nano technology, medicine, engineering, biotechnology, pharmaceutical and many other industries. This is an authoritative introduction to the most recent developments in the area, which will provide the reader with a better understanding of the almost unlimited opportunities in the progress and design of new intelligent materials. An indispensable reference for anyone contemplating working in the field! Comments on this book... "This will be the starting point for all researchers looking for industrial solutions involving smart materials. Congratulations to the Editors for providing such a vast and interdisciplinary book." P.-G de Gennes, France Prix Nobel de Physic 1991