Small Particles Technology

Small Particles Technology PDF

Author: Jan-Erik Otterstedt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 538

ISBN-13: 1475765231

DOWNLOAD EBOOK →

It is difficult to imagine modem technology without small particles, 1-1000 nm in size, because virtually every industry depends in some way on the use of such materials. Catalysts, printing inks, paper, dyes and pigments, many medicinal products, adsorbents, thickening agents, some adhesives, clays, and hundreds of other diverse products are based on or involve small particles in a very fundamental way. In some cases finely divided materials occur naturally or are merely a convenient form for using a material. In most cases small particles play a special role in technology because in effect they constitute a different state of matter because of the basic fact that the surface of a material is different from the interior by virtue of the unsaturated bonding interactions of the outermost layers of atoms at the surface of a solid. Whereas in a macroscale particle these differences are often insignificant, as the 9 surface area per unit mass becomes larger by a factor of as much as 10 , physical and chemical effects such as adsorption become so pronounced as to make the finely divided form of the bulk material into essentially a different material usually one that has no macroscale counterpart.

Particle Technology and Engineering

Particle Technology and Engineering PDF

Author: Jonathan P.K. Seville

Publisher: Butterworth-Heinemann

Published: 2016-05-20

Total Pages: 296

ISBN-13: 0080983448

DOWNLOAD EBOOK →

Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods. Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling Enables engineers to build their knowledge and skills and to enhance their mechanistic understanding of particulate systems

Challenges in Characterizing Small Particles

Challenges in Characterizing Small Particles PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2012-04-02

Total Pages: 100

ISBN-13: 0309225930

DOWNLOAD EBOOK →

Small particles are ubiquitous in the natural and built worlds and have tremendous impact throughout. However, a lack of understanding about the properties and chemical composition of small particles limits our ability to predict, and control their applications and impacts. Challenges in Characterizing Small Particles: Exploring Particles from the Nano- to Microscales summarizes presentations and discussions at a 2010 National Academies roundtable. Speakers at this roundtable discussed the crucial types of information that need to be determined about small particles in different media. They also explored the critical importance of small particles in environmental science, materials and chemical sciences, biological science, and engineering, and the many challenges involved in characterizing materials at the nano- and microscales. The discussions on characterization included static, dynamic, experimental, computational, and theoretical characterization. The workshop also included several "research tool" presentations that highlighted new advances in characterizing small particles.

Challenges in Characterizing Small Particles

Challenges in Characterizing Small Particles PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2012-05-02

Total Pages: 100

ISBN-13: 0309225906

DOWNLOAD EBOOK →

Small particles are ubiquitous in the natural and built worlds and have tremendous impact throughout. However, a lack of understanding about the properties and chemical composition of small particles limits our ability to predict, and control their applications and impacts. Challenges in Characterizing Small Particles: Exploring Particles from the Nano- to Microscales summarizes presentations and discussions at a 2010 National Academies roundtable. Speakers at this roundtable discussed the crucial types of information that need to be determined about small particles in different media. They also explored the critical importance of small particles in environmental science, materials and chemical sciences, biological science, and engineering, and the many challenges involved in characterizing materials at the nano- and microscales. The discussions on characterization included static, dynamic, experimental, computational, and theoretical characterization. The workshop also included several "research tool" presentations that highlighted new advances in characterizing small particles.

Particle Technology

Particle Technology PDF

Author: Hans Rumpf

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 211

ISBN-13: 9401179441

DOWNLOAD EBOOK →

The inspiration for translating this classic text came during a sabbatical year spent at the University of Karlsruhe in 1974. Under the leadership of the late Professor Hans Rumpf, the Institut fUr Mechanische Verfahrenstechnik, Karlsruhe, from the early 1960s onwards, by extensive research and advanced teaching had promoted the discipline of mechanical process technology, a branch of process engineering which had been rather neglected, especially in many chemical engineering depart ments of universities in the English-speaking world. There is a need for texts of this kind, particularly for the more specialized teaching that has to be done during the later stages of engineering courses. This work, which is really a monograph, serves as a concise and compact introduction, albeit at an advanced level, to all those functions of process engineering that have to do with the handling and treatment of particulate matter and bulk solids. Much of this information has previously been scattered around journals and other books and not brought together in one work. Furthermore, Rumpf has emphasized the physical and theoretical foundations of the subject and avoided a treatment that is simply empirical.

Superfine Particle Technology

Superfine Particle Technology PDF

Author: Noboru Ichinose

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 230

ISBN-13: 1447118081

DOWNLOAD EBOOK →

If a substance is repeatedly subdivided, the result is what are known as "microscopic particles". These particles are distinguished from the solid mass which they originally formed by the size of the surface area per unit weight. This simple difference holds true down to a certain lower size limit, and when this limit is exceeded, a new state of matter is reached, in which the behavior of the particles is quite different to that of the original solid. Particles in this state are termed "superfine particles", and are distinct from ordinary particles. The size of the superfine particles, that is to say the size limit below which particle behavior is completely different from the behavior of the original solid, varies a good deal depending on the physical properties of the substance in question. Properties such as magnetism and electrical resistance are closely related to the internal structural properties of the particles themselves, such as the magnetization processes of their respective magnetic domains, and the mean free path of charged bodies. This internal structure therefore limits the size of the superfine particles. In ceramic processing, on the other hand, the surface area of the particles themselves becomes an even more important factor than their internal structure. In this case, the size of the superfine particles is determined by the interaction between water and solvents on the surface of the particles.

Particle Characterization in Technology

Particle Characterization in Technology PDF

Author: Beddow

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 343

ISBN-13: 1351092251

DOWNLOAD EBOOK →

Volume I present an important exposition of some of the most significant areas where particle characterization is applied. The technological fields include pharmaceutical materials, bulk solids, and explosions.

Particulate Technology for Delivery of Therapeutics

Particulate Technology for Delivery of Therapeutics PDF

Author: Sougata Jana

Publisher: Springer

Published: 2017-10-09

Total Pages: 451

ISBN-13: 9811036470

DOWNLOAD EBOOK →

The book focuses on novel particulate technologies for the purpose of drug delivery to humans. Nowadays, macro and nano-scale particles are being investigated for targeted delivery of small and large biological macromolecules. The targeting of drugs can minimize the dosage regimen and reduces dose related potential toxicity of drug molecules, which in turn lead to increased potential compliance. Various types of organic, inorganic and polymer particles are currently being investigated. These are attracting the attention of the research workers in the field of drug delivery science and technology. This book covers polymersomes, inorganic- organic composites, gold nanoparticles biopolymer and synthetic polymer particles etc.All aspects of drug delivery in relation to each technology have been described including these advances, Easy to read and understand the content of each chapter Rich in up-to-date information regarding their application.