Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering PDF

Author: L.A. Feigin

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 339

ISBN-13: 1475766246

DOWNLOAD EBOOK →

Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Catalyst Characterization

Catalyst Characterization PDF

Author: Boris Imelik

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 720

ISBN-13: 1475795890

DOWNLOAD EBOOK →

to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.

Biological Small Angle Scattering: Techniques, Strategies and Tips

Biological Small Angle Scattering: Techniques, Strategies and Tips PDF

Author: Barnali Chaudhuri

Publisher: Springer

Published: 2017-12-07

Total Pages: 268

ISBN-13: 981106038X

DOWNLOAD EBOOK →

This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications. The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS. The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications. Chapter 3 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Synchrotron Radiation Applications

Synchrotron Radiation Applications PDF

Author: Zhang Xinyi

Publisher: World Scientific

Published: 2018-03-20

Total Pages: 668

ISBN-13: 9813227680

DOWNLOAD EBOOK →

This is a research-level review volume. It presents both the fundamentals and the advanced research results, covering most part of important aspects of synchrotron radiation applications. Among the broad subjects of synchrotron radiation applications, as the main content of this book we have applications in VUV, soft X-rays, hard X-rays and XFEL (X-ray free electron laser) and important applications by various synchrotron-based techniques and methods, such as ARPES (angle-resolved photoemission spectroscopy), VUV photo-ionization spectroscopy, X-ray absorption/emission spectroscopy and X-ray absorption fine structure, X-ray diffraction, small angle X-ray scattering, X-ray excited optical luminescence, imaging and high pressure techniques. Contents: Angle Resolved Photoemission Spectroscopy Study Utilizing the Synchrotron Radiation (Yan Zhang, Dawei Shen, and Donglai Feng) Synchrotron-Based VUV Photoionization Mass Spectrometry in Combustion Chemistry Research (Nils Hansen, Bin Yang, and Tina Kasper) Developments on Synchrotron X-Ray Diffraction (Qiyun Xie and Xiaoshan Wu) Structural Biology and Synchrotron Radiation (Zihe Rao and Zhiyong Lou) Fluorescence Detected XAS — Unconventional Applications (Hiroyuki Oyanagi) The Application of X-Ray Absorption Fine Structure Spectroscopy in Functional Materials (Zhihu Sun, Xinyi Zhang, and Shiqiang Wei) Small Angle X-Ray Scattering and Its Applications (Zhonghua Wu and Xueqing Xing) Crystal-Based X-Ray Medical Imaging Using Synchrotron Radiation and Its Future Prospect (Masami Ando, Naoki Sunaguchi, Yongjin Sung, Daisuke Shimao, Jong-Ki Kim, Gang Li, Yoshifumi Suzuki, Tetsuya Yuasa, Kensaku Mori, Shu Ichihara and Rajiv Gupta) X-Ray Imaging and Its Applications (Tiqiao Xiao and Honglan Xie) Synchrotron Radiation Applications in Medicine (Yifeng Peng, Liangqi Wang, Chenglin Liu, Alberto Bravin, Gang Li, Shaoliang Chen, Yongting Wang, Guo-Yuan Yang and Xinyi Zhang) Synchrotron Radiation Applications on High-Pressure Research (Bo Zou, Kai Wang, Shourui Li and Guangtian Zou) X-Ray Excited Optical Luminescence and Its Applications (Lijia Liu and Xuhui Sun) A Compact X-Ray Free-Electron Laser: SACLA (Hitoshi Tanaka, Takashi Tanaka, Kei Sawada, Makina Yabashi, and Tetsuya Ishikawa) Femtosecond Imaging of Single Particles and Molecules Using X-Ray Free-Electron Lasers (Andrew V Martin and N Duane Loh) Readership: Graduate students and professionals working on synchrotron radiation. Keywords: Angle Resolved Photoemission Spectroscopy (ARPES);Coherent Diffractive Imaging (CDI);Combustion;Detactor Development;Free-Electron Laser;High Pressure;Medical Imaging;Nanomaterials;Photoemission Spectroscopy;Protein Crystallography;Serial Femtosecond Crystallography (SFX);Single Particles and Molecules;Small Angle X-Ray Scattering;Strongly Correlated Materials;Surface X-Ray Diffraction;Synchrotron Radiation Applications;Table Top X-Ray Source;VUV Photoionization Mass Spectrometry;X-Ray Absorption Fine Structure (XAFS);X-Ray Absorption Spectroscopy (XAS);X-Ray Excited Optical Luminescence (XEOL);X-Ray Fluorescence (XRF)Review: Key Features: The book contains the latest synchrotron-based techniques and research results All contributors are specialists or leading scientists in their fields The book includes new techniques and methods that will potentially get wider applications in various disciplines

Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules

Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules PDF

Author: Dmitri I. Svergun

Publisher: Oxford University Press, USA

Published: 2020-01-06

Total Pages: 368

ISBN-13: 9780198854210

DOWNLOAD EBOOK →

This book describes all aspects of the technique of small-angle scattering of X-rays and neutrons, including instrumentation, sample requirements, data interpretation and modelling methods, in a comprehensive way and gives examples of applications in various fields of biophysics and biochemistry.

Small-Angle Scattering

Small-Angle Scattering PDF

Author: Ian W. Hamley

Publisher: John Wiley & Sons

Published: 2021-04-19

Total Pages: 288

ISBN-13: 1119768306

DOWNLOAD EBOOK →

SMALL-ANGLE SCATTERING A comprehensive and timely volume covering contemporary research, practical techniques, and theoretical approaches to SAXS and SANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications provides authoritative coverage of both small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS) and grazing incidence small-angle scattering (GISAS) including GISAXS and GISANS. This single-volume resource offers readers an up-to-date view of the state of the field, including the theoretical foundations, experimental methods, and practical applications of small-angle scattering (SAS) techniques including laboratory and synchrotron SAXS and reactor/spallation SANS. Organized into six chapters, the text first describes basic theory, instrumentation, and data analysis. The following chapters contain in-depth discussion on various applications of SAXS and SANS and GISAXS and GISANS, and on specific techniques for investigating structure and order in soft materials, biomolecules, and inorganic and magnetic materials. Author Ian Hamley draws from his more than thirty years’ experience working with many systems, instruments, and types of small-angle scattering experiments across most European facilities to present the most complete introduction to the field available. This book: Presents uniquely broad coverage of practical and theoretical approaches to SAXS and SANS Includes practical information on instrumentation and data analysis Offers useful examples and an accessible and concise presentation of topics Covers new developments in the techniques of SAXS and SANS, including GISAXS and GISANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications is a valuable source of detailed information for researchers and postgraduate students in the field, as well as other researchers using X-ray and neutron scattering to investigate soft materials, other nanostructured materials and biomolecules such as proteins.

Handbook of Materials Characterization

Handbook of Materials Characterization PDF

Author: Surender Kumar Sharma

Publisher: Springer

Published: 2018-09-18

Total Pages: 613

ISBN-13: 3319929550

DOWNLOAD EBOOK →

This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.