Simulating Enzyme Reactivity

Simulating Enzyme Reactivity PDF

Author: Inaki Tunon

Publisher: Royal Society of Chemistry

Published: 2016-11-25

Total Pages: 558

ISBN-13: 1782624295

DOWNLOAD EBOOK →

Exploring the theories, methodologies and applications in simulations of enzymatic reactions, this book is a great resource for postgraduate students and researchers.

Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis

Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis PDF

Author: John Maclane

Publisher: Createspace Independent Publishing Platform

Published: 2017-06-07

Total Pages: 446

ISBN-13: 9781548041595

DOWNLOAD EBOOK →

The simulation of enzymatic processes is a well-established field within computational chemistry, as demonstrated by the 2013 Nobel Prize in Chemistry. It has been attracting increasing attention in recent years due to the potential applications in the development of new drugs or new environmental-friendly catalysts. Featuring contributions from renowned authors, including Nobel Laureate Arieh Warshel, this book explores the theories, methodologies and applications in simulations of enzyme reactions. It is the first book offering a comprehensive perspective of the field by examining several different methodological approaches and discussing their applicability and limitations. The book provides the basic knowledge for postgraduate students and researchers in chemistry, biochemistry and biophysics, who want a deeper understanding of complex biological process at the molecular level.

Nanozymes: Next Wave of Artificial Enzymes

Nanozymes: Next Wave of Artificial Enzymes PDF

Author: Xiaoyu Wang

Publisher: Springer

Published: 2016-07-27

Total Pages: 127

ISBN-13: 3662530686

DOWNLOAD EBOOK →

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.

Computational Approaches to Biochemical Reactivity

Computational Approaches to Biochemical Reactivity PDF

Author: Gábor Náray-Szabó

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 386

ISBN-13: 0306469340

DOWNLOAD EBOOK →

A quantitative description of the action of enzymes and other biological systems is both a challenge and a fundamental requirement for further progress in our und- standing of biochemical processes. This can help in practical design of new drugs and in the development of artificial enzymes as well as in fundamental understanding of the factors that control the activity of biological systems. Structural and biochemical st- ies have yielded major insights about the action of biological molecules and the mechanism of enzymatic reactions. However it is not entirely clear how to use this - portant information in a consistent and quantitative analysis of the factors that are - sponsible for rate acceleration in enzyme active sites. The problem is associated with the fact that reaction rates are determined by energetics (i. e. activation energies) and the available experimental methods by themselves cannot provide a correlation - tween structure and energy. Even mutations of specific active site residues, which are extremely useful, cannot tell us about the totality of the interaction between the active site and the substrate. In fact, short of inventing experiments that allow one to measure the forces in enzyme active sites it is hard to see how can one use a direct experimental approach to unambiguously correlate the structure and function of enzymes. In fact, in view of the complexity of biological systems it seems that only computers can handle the task of providing a quantitative structure-function correlation.

Computational Approaches for Studying Enzyme Mechanism

Computational Approaches for Studying Enzyme Mechanism PDF

Author:

Publisher: Academic Press

Published: 2016-08-04

Total Pages: 558

ISBN-13: 0128053631

DOWNLOAD EBOOK →

Computational Approaches for Studying Enzyme Mechanism Part A, is the first of two volumes in the Methods in Enzymology series, focusses on computational approaches for studying enzyme mechanism. The serial achieves the critically acclaimed gold standard of laboratory practices and remains one of the most highly respected publications in the molecular biosciences. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 550 volumes, the series remains a prominent and essential publication for researchers in all fields of life sciences and biotechnology, including biochemistry, chemical biology, microbiology, synthetic biology, cancer research, and genetics to name a few. Focuses on computational approaches for studying enzyme mechanism Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods in intermediate filament associated proteins, and contains sections on such topics as lamin-associated proteins, intermediate filament-associated proteins and plakin, and other cytoskeletal cross-linkers

Multi-scale Quantum Models for Biocatalysis

Multi-scale Quantum Models for Biocatalysis PDF

Author: Darrin M. York

Publisher: Springer Science & Business Media

Published: 2009-05-30

Total Pages: 426

ISBN-13: 1402099568

DOWNLOAD EBOOK →

“Multi-scale Quantum Models for Biocatalysis” explores various molecular modelling techniques and their applications in providing an understanding of the detailed mechanisms at play during biocatalysis in enzyme and ribozyme systems. These areas are reviewed by an international team of experts in theoretical, computational chemistry, and biophysics. This book presents detailed reviews concerning the development of various techniques, including ab initio molecular dynamics, density functional theory, combined QM/MM methods, solvation models, force field methods, and free-energy estimation techniques, as well as successful applications of multi-scale methods in the biocatalysis systems including several protein enzymes and ribozymes. This book is an excellent source of information for research professionals involved in computational chemistry and physics, material science, nanotechnology, rational drug design and molecular biology and for students exposed to these research areas.

Mass Spectrometry in Chemical Biology

Mass Spectrometry in Chemical Biology PDF

Author: Norberto Peporine Lopes

Publisher: Royal Society of Chemistry

Published: 2017-11-22

Total Pages: 312

ISBN-13: 1782625275

DOWNLOAD EBOOK →

Mass spectrometry is one of the most widespread technologies in chemistry and has been increasingly used in biology with the rise of omics sciences. This book summarizes some important methodological approaches in mass spectrometry and applications in the field of chemical biology. The core chapters build on basic concepts introduced in the opening chapter and explore established fields such as high throughput screening, proteomics and metabolomics. Emerging applications of mass spectrometry in elucidating biosynthetic pathways, enzyme mechanisms and protein-protein interactions are then presented. Connections between these diverse research fields are highlighted throughout. The book concludes with a discussion of databases and future perspectives. This book will be a useful tool to early chemical biology researchers wishing to incorporate mass spectrometry as a tool in their research.