Silicon-On-Insulator (SOI) Technology

Silicon-On-Insulator (SOI) Technology PDF

Author: O. Kononchuk

Publisher: Elsevier

Published: 2014-06-19

Total Pages: 503

ISBN-13: 0857099256

DOWNLOAD EBOOK →

Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-on-oxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. Covers SOI transistors and circuits, as well as manufacturing processes and reliability Looks at applications such as memory, power devices, and photonics

Silicon-on-Insulator Technology: Materials to VLSI

Silicon-on-Insulator Technology: Materials to VLSI PDF

Author: J.-P. Colinge

Publisher: Springer Science & Business Media

Published: 2004-02-29

Total Pages: 392

ISBN-13: 9781402077739

DOWNLOAD EBOOK →

Silicon-on-Insulator Technology: Materials to VLSI, Third Edition, retraces the evolution of SOI materials, devices and circuits over a period of roughly twenty years. Twenty years of progress, research and development during which SOI material fabrication techniques have been born and abandoned, devices have been invented and forgotten, but, most importantly, twenty years during which SOI Technology has little by little proven it could outperform bulk silicon in every possible way. The turn of the century turned out to be a milestone for the semiconductor industry, as high-quality SOI wafers suddenly became available in large quantities. From then on, it took only a few years to witness the use of SOI technology in a wealth of applications ranging from audio amplifiers and wristwatches to 64-bit microprocessors. This book presents a complete and state-of-the-art review of SOI materials, devices and circuits. SOI fabrication and characterization techniques, SOI CMOS processing, and the physics of the SOI MOSFET receive an in-depth analysis. Silicon-on-Insulator Technology: Materials to VLSI, Third Edition, also describes the properties of other SOI devices, such as multiple gate MOSFETs, dynamic threshold devices and power MOSFETs. The advantages and performance of SOI circuits used in both niche and mainstream applications are discussed in detail. The SOI specialist will find this book invaluable as a source of compiled references covering the different aspects of SOI technology. For the non-specialist, the book serves an excellent introduction to the topic with detailed, yet simple and clear explanations. Silicon-on-Insulator Technology: Materials to VLSI, Third Edition is recommended for use as a textbook for classes on semiconductor device processing and physics at the graduate level.

Fully Depleted Silicon-On-Insulator

Fully Depleted Silicon-On-Insulator PDF

Author: Sorin Cristoloveanu

Publisher: Elsevier

Published: 2021-08-04

Total Pages: 386

ISBN-13: 0128231653

DOWNLOAD EBOOK →

Fully Depleted Silicon-On-Insulator provides an in-depth presentation of the fundamental and pragmatic concepts of this increasingly important technology. There are two main technologies in the marketplace of advanced CMOS circuits: FinFETs and fully depleted silicon-on-insulators (FD-SOI). The latter is unchallenged in the field of low-power, high-frequency, and Internet-of-Things (IOT) circuits. The topic is very timely at research and development levels. Compared to existing books on SOI materials and devices, this book covers exhaustively the FD-SOI domain. Fully Depleted Silicon-On-Insulator is based on the expertise of one of the most eminent individuals in the community, Dr. Sorin Cristoloveanu, an IEEE Andrew Grove 2017 award recipient "For contributions to silicon-on-insulator technology and thin body devices." In the book, he shares key insights on the technological aspects, operation mechanisms, characterization techniques, and most promising emerging applications. Early praise for Fully Depleted Silicon-On-Insulator "It is an excellent written guide for everyone who would like to study SOI deeply, specially focusing on FD-SOI." --Dr. Katsu Izumi, Formerly at NTT Laboratories and then at Osaka Prefecture University, Japan "FDSOI technology is poised to catch an increasingly large portion of the semiconductor market. This book fits perfectly in this new paradigm [...] It covers many SOI topics which have never been described in a book before." --Professor Jean-Pierre Colinge, Formerly at TSMC and then at CEA-LETI, Grenoble, France "This book, written by one of the true experts and pioneers in the silicon-on-insulator field, is extremely timely because of the growing footprint of FD-SOI in modern silicon technology, especially in IoT applications. Written in a delightfully informal style yet comprehensive in its coverage, the book describes both the device physics underpinning FD-SOI technology and the cutting-edge, perhaps even futuristic devices enabled by it." --Professor Alexander Zaslavsky, Brown University, USA "A superbly written book on SOI technology by a master in the field." --Professor Yuan Taur, University of California, San Diego, USA "The author is a world-top researcher of SOI device/process technology. This book is his masterpiece and important for the FD-SOI archive. The reader will learn much from the book." --Professor Hiroshi Iwai, National Yang Ming Chiao Tung University, Taiwan From the author "It is during our global war against the terrifying coalition of corona and insidious computer viruses that this book has been put together. Continuous enlightenment from FD-SOI helped me cross this black and gray period. I shared a lot of myself in this book. The rule of the game was to keep the text light despite the heavy technical content. There are even tentative FD-SOI hieroglyphs on the front cover, composed of curves discussed in the book." Written by a top expert in the silicon-on-insulator community and IEEE Andrew Grove 2017 award recipient Comprehensively addresses the technology aspects, operation mechanisms and electrical characterization techniques for FD-SOI devices Discusses FD-SOI’s most promising device structures for memory, sensing and emerging applications

Silicon-on-Insulator Technology: Materials to VLSI

Silicon-on-Insulator Technology: Materials to VLSI PDF

Author: J.-P. Colinge

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 375

ISBN-13: 1441991069

DOWNLOAD EBOOK →

Silicon-on-Insulator Technology: Materials to VLSI, Third Edition, retraces the evolution of SOI materials, devices and circuits over a period of roughly twenty years. Twenty years of progress, research and development during which SOI material fabrication techniques have been born and abandoned, devices have been invented and forgotten, but, most importantly, twenty years during which SOI Technology has little by little proven it could outperform bulk silicon in every possible way. The turn of the century turned out to be a milestone for the semiconductor industry, as high-quality SOI wafers suddenly became available in large quantities. From then on, it took only a few years to witness the use of SOI technology in a wealth of applications ranging from audio amplifiers and wristwatches to 64-bit microprocessors. This book presents a complete and state-of-the-art review of SOI materials, devices and circuits. SOI fabrication and characterization techniques, SOI CMOS processing, and the physics of the SOI MOSFET receive an in-depth analysis.

Electrical Characterization of Silicon-on-Insulator Materials and Devices

Electrical Characterization of Silicon-on-Insulator Materials and Devices PDF

Author: Sorin Cristoloveanu

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 389

ISBN-13: 1461522455

DOWNLOAD EBOOK →

Silicon on Insulator is more than a technology, more than a job, and more than a venture in microelectronics; it is something different and refreshing in device physics. This book recalls the activity and enthu siasm of our SOl groups. Many contributing students have since then disappeared from the SOl horizon. Some of them believed that SOl was the great love of their scientific lives; others just considered SOl as a fantastic LEGO game for adults. We thank them all for kindly letting us imagine that we were guiding them. This book was very necessary to many people. SOl engineers will certainly be happy: indeed, if the performance of their SOl components is not always outstanding, they can now safely incriminate the relations given in the book rather than their process. Martine, Gunter, and Y. S. Chang can contemplate at last the amount of work they did with the figures. Our SOl accomplices already know how much we borrowed from their expertise and would find it indecent to have their detailed contri butions listed. Jean-Pierre and Dimitris incited the book, while sharing their experience in the reliability of floating bodies. Our families and friends now realize the SOl capability of dielectrically isolating us for about two years in a BOX. Our kids encouraged us to start writing. Our wives definitely gave us the courage to stop writing. They had a hard time fighting the symptoms of a rapidly developing SOl allergy.

SIMOX

SIMOX PDF

Author: Maria J. Anc

Publisher: IET

Published: 2004-12-03

Total Pages: 164

ISBN-13: 9780863413346

DOWNLOAD EBOOK →

SIMOX represents the first effort to compile a broad spectrum of knowledge from various groups of researchers and technologists in the world. It provides the reader with a basic understanding of SIMOX technology and in addition gives a good starting point for further investigation and applications.

SOI Design

SOI Design PDF

Author: Andrew Marshall

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 410

ISBN-13: 0306481618

DOWNLOAD EBOOK →

This title introduces state-of-the-art design principles for SOI circuit design, and is primarily concerned with circuit-related issues. It considers SOI material in terms of implementation that is promising or has been used elsewhere in circuit development, with historical perspective where appropriate.

Ultra-thin Chip Technology and Applications

Ultra-thin Chip Technology and Applications PDF

Author: Joachim Burghartz

Publisher: Springer Science & Business Media

Published: 2010-11-18

Total Pages: 471

ISBN-13: 1441972765

DOWNLOAD EBOOK →

Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, Microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

Silicon Photonics

Silicon Photonics PDF

Author: Graham T. Reed

Publisher: John Wiley & Sons

Published: 2004-10-29

Total Pages: 276

ISBN-13: 0470870354

DOWNLOAD EBOOK →

The growing demand for instant and reliable communication means that photonic circuits are increasingly finding applications in optical communications systems. One of the prime candidates to provide satisfactory performance at low cost in the photonic circuit is silicon. Whilst silicon photonics is less well developed as compared to some other material technologies, it is poised to make a serious impact on the telecommunications industry, as well as in many other applications, as other technologies fail to meet the yield/performance/cost trade-offs. Following a sympathetic tutorial approach, this first book on silicon photonics provides a comprehensive overview of the technology. Silicon Photonics explains the concepts of the technology, taking the reader through the introductory principles, on to more complex building blocks of the optical circuit. Starting with the basics of waveguides and the properties peculiar to silicon, the book also features: Key design issues in optical circuits. Experimental methods. Evaluation techniques. Operation of waveguide based devices. Fabrication of silicon waveguide circuits. Evaluation of silicon photonic systems. Numerous worked examples, models and case studies. Silicon Photonics is an essential tool for photonics engineers and young professionals working in the optical network, optical communications and semiconductor industries. This book is also an invaluable reference and a potential main text to senior undergraduates and postgraduate students studying fibre optics, integrated optics, or optical network technology.

Device Physics, Modeling, Technology, and Analysis for Silicon MESFET

Device Physics, Modeling, Technology, and Analysis for Silicon MESFET PDF

Author: Iraj Sadegh Amiri

Publisher: Springer

Published: 2018-12-13

Total Pages: 122

ISBN-13: 3030045137

DOWNLOAD EBOOK →

This book provides detailed and accurate information on the history, structure, operation, benefits and advanced structures of silicon MESFET, along with modeling and analysis of the device. The authors explain the detailed physics that are important in modeling of SOI-MESFETs, and present the derivations of compact model expressions so that users can recognize the physical meaning of the model equations and parameters. The discussion also includes advanced structures for SOI-MESFET for submicron applications.