Silicon Nanomaterials Sourcebook, Two-Volume Set

Silicon Nanomaterials Sourcebook, Two-Volume Set PDF

Author: Klaus D. Sattler

Publisher:

Published: 2017

Total Pages: 1384

ISBN-13: 9781315153308

DOWNLOAD EBOOK →

"This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials:Covers fundamental concepts, properties, methods, and practical applications.Focuses on one important type of silicon nanomaterial in every chapter.Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction.Highlights materials that show exceptional properties as well as strong prospects for future applications.?Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics."--Provided by publisher.

Silicon Nanomaterials Sourcebook

Silicon Nanomaterials Sourcebook PDF

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 664

ISBN-13: 149876388X

DOWNLOAD EBOOK →

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Silicon Nanomaterials Sourcebook, Two-Volume Set

Silicon Nanomaterials Sourcebook, Two-Volume Set PDF

Author: Klaus D. Sattler

Publisher:

Published: 2021-03-31

Total Pages: 0

ISBN-13: 9780367777975

DOWNLOAD EBOOK →

This Sourcebook offers a comprehensive survey of the field of silicon nanomaterials, which is transforming microelectronic devices of today and the future. Vol 2 focuses on hybrid materials, arrays, networks, and biomedical applications.

Silicon Nanomaterials Sourcebook

Silicon Nanomaterials Sourcebook PDF

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 643

ISBN-13: 1498763871

DOWNLOAD EBOOK →

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Carbon Nanomaterials Sourcebook, Two-Volume Set

Carbon Nanomaterials Sourcebook, Two-Volume Set PDF

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2022-05-30

Total Pages: 1384

ISBN-13: 1482282771

DOWNLOAD EBOOK →

This two-volume sourcebook is the most comprehensive reference for carbon nanomaterials, bringing together the physics, chemistry, materials science, molecular biology and engineering of all carbon nanomaterial types that are important in electronics, energy, biomedical and environmental applications. Each chapter addresses the fundamental properties, growth mechanisms, processing and functionalization of a particular nanocarbon. The first volume covers graphene, fullerenes, nanotubes and nanodiamonds. The second volume focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures and nanocomposites.

Advanced Thermoelectrics

Advanced Thermoelectrics PDF

Author: Zhifeng Ren

Publisher: CRC Press

Published: 2017-11-06

Total Pages: 790

ISBN-13: 1498765734

DOWNLOAD EBOOK →

This book provides an overview on nanostructured thermoelectric materials and devices, covering fundamental concepts, synthesis techniques, device contacts and stability, and potential applications, especially in waste heat recovery and solar energy conversion. The contents focus on thermoelectric devices made from nanomaterials with high thermoelectric efficiency for use in large scale to generate megawatts electricity. Covers the latest discoveries, methods, technologies in materials, contacts, modules, and systems for thermoelectricity. Addresses practical details of how to improve the efficiency and power output of a generator by optimizing contacts and electrical conductivity. Gives tips on how to realize a realistic and usable device or module with attention to large scale industry synthesis and product development. Prof. Zhifeng Ren is M. D. Anderson Professor in the Department of Physics and the Texas Center for Superconductivity at the University of Houston. Prof. Yucheng Lan is an associate professor in Morgan State University. Prof. Qinyong Zhang is a professor in the Center for Advanced Materials and Energy at Xihua University of China.

Handbook of Silicon Carbide Materials and Devices

Handbook of Silicon Carbide Materials and Devices PDF

Author: Zhe Chuan Feng

Publisher: CRC Press

Published: 2023-07-10

Total Pages: 465

ISBN-13: 0429583958

DOWNLOAD EBOOK →

This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.

Bioelectronics

Bioelectronics PDF

Author: Anuj Kumar

Publisher: CRC Press

Published: 2022-12-08

Total Pages: 413

ISBN-13: 1000789276

DOWNLOAD EBOOK →

Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.

2D Materials for Infrared and Terahertz Detectors

2D Materials for Infrared and Terahertz Detectors PDF

Author: Antoni Rogalski

Publisher: CRC Press

Published: 2020-10-25

Total Pages: 265

ISBN-13: 1000204936

DOWNLOAD EBOOK →

2D Materials for Infrared and Terahertz Detectors provides an overview of the performance of emerging detector materials, while also offering, for the first time, a comparison with traditional materials used in the fabrication of infrared and terahertz detectors. Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively researched. The extraordinary electronic and optical properties allow graphene and other 2D materials to be promising candidates for infrared (IR) and terahertz (THz) photodetectors, and yet it appears that the development of new detectors using these materials is still secondary to those using traditional materials. This book explores this phenomenon, as well as the advantages and disadvantages of using 2D materials. Special attention is directed toward the identification of the most-effective hybrid 2D materials in infrared and terahertz detectors, as well as future trends. Written by one of the world’s leading researchers in the field of IR optoelectronics, this book will be a must-read for researchers and graduate students in photodetectors and related fields. Features • Offers a comprehensive overview of the different types of 2D materials used in fabrication of IR and THz detectors, and includes their advantages/disadvantages • The first book to compare new detectors to a wide family of common, commercially available detectors that use traditional materials.