Silicon Carbide Microsystems for Harsh Environments

Silicon Carbide Microsystems for Harsh Environments PDF

Author: Muthu Wijesundara

Publisher: Springer Science & Business Media

Published: 2011-05-17

Total Pages: 247

ISBN-13: 1441971211

DOWNLOAD EBOOK →

Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods towards system level integration of components and key challenges are evaluated and discussed based on the current state of SiC materials processing and device technology. Issues such as temperature mismatch, process compatibility and temperature stability of individual components and how these issues manifest when building the system receive thorough investigation. The material covered not only reviews the state-of-the-art MEMS devices, provides a framework for the joining of electronics and MEMS along with packaging into usable harsh-environment-ready sensor modules.

Silicon Carbide Microelectromechanical Systems for Harsh Environments

Silicon Carbide Microelectromechanical Systems for Harsh Environments PDF

Author: Rebecca Cheung

Publisher: World Scientific

Published: 2006

Total Pages: 193

ISBN-13: 1860946240

DOWNLOAD EBOOK →

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS.This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product.

Silicon Carbide Microelectromechanical Systems For Harsh Environments

Silicon Carbide Microelectromechanical Systems For Harsh Environments PDF

Author: Rebecca Cheung

Publisher: World Scientific

Published: 2006-06-29

Total Pages: 193

ISBN-13: 1783260025

DOWNLOAD EBOOK →

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS.This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product./a

SiC MEMS For Harsh Environments

SiC MEMS For Harsh Environments PDF

Author:

Publisher:

Published: 2003

Total Pages: 25

ISBN-13:

DOWNLOAD EBOOK →

This document is the final technical report for the SiC MEMS for Harsh Environments in-house research program jointly coordinated between AFRL/MNMF and AFRL/MLPS, and addresses the benefits of silicon carbide (SiC) as a material of choice for harsh environment applications, specifically at the scale of microelectromechanical systems (MEMS). The results from this program provide clear evidence of the benefit of SiC as a harsh environment (specifically high temperature) material for both structural and electronic devices. Although shock testing of SiC MEMS devices under this program was not accomplished, subsequent work allowed for this testing to occur, with positive results. Furthermore, one of the key concerns with respect to SiC electronics was the need for good contact metallization for ohmic contacts. Rhenium was found to be an excellent material for providing ohmic contact metallization on SiC. These results provide a good foundation for the benefits of SiC for harsh environment (high temperature and high shock) applications.

Piezoresistive Effect of p-Type Single Crystalline 3C-SiC

Piezoresistive Effect of p-Type Single Crystalline 3C-SiC PDF

Author: Hoang-Phuong Phan

Publisher: Springer

Published: 2017-04-06

Total Pages: 156

ISBN-13: 3319555448

DOWNLOAD EBOOK →

This book addresses the piezoresistance in p-type 3C-SiC, which it investigates using experimental characterization and theoretical analysis. The gauge factor, the piezoresistive coefficients in two-terminal and four-terminal resistors, the comparison between single crystalline and nanocrystalline SiC, along with the temperature dependence of the piezoresistive effect in p-type 3C-SiC are also discussed. Silicon carbide (SiC) is an excellent material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical properties and extreme chemical inertness. Among the numerous polytypes of SiC, the cubic single crystal, which is also well known as 3C-SiC, is the most promising platform for microelectromechanical (MEMS) applications, as it can be epitaxially grown on an Si substrate with diameters of up to several hundred millimeters. This feature makes 3C-SiC compatible with the conventional Si-based micro/nano processing and also cuts down the cost of SiC wafers. The investigation into the piezoresistive effect in 3C-SiC is of significant interest for the development of mechanical transducers such as pressure sensors and strain sensors used for controlling combustion and deep well drilling. Although a number of studies have focused on the piezoresistive effect in n-type 3C-SiC, 4H-SiC and 6H-SiC, comparatively little attention has been paid to piezoresistance in p-type 3C-SiC. In addition, the book investigates the piezoresistive effect of top-down fabricated SiC nanowires, revealing a high degree of sensitivity in nanowires employing an innovative nano strain-amplifier. The large gauge factors of the p-type 3C-SiC at both room temperature and high temperatures found here indicate that this polytype could be suitable for the development of mechanical sensing devices operating in harsh environments with high temperatures.

Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors

Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors PDF

Author: Toan Dinh

Publisher: Springer

Published: 2018-10-05

Total Pages: 115

ISBN-13: 9811325715

DOWNLOAD EBOOK →

This book presents the fundamentals of the thermoelectrical effect in silicon carbide (SiC), including the thermoresistive, thermoelectric, thermocapacitive and thermoelectronic effects. It summarizes the growth of SiC, its properties and fabrication processes for SiC devices and introduces the thermoelectrical sensing theories in different SiC morphologies and polytypes. Further, it reviews the recent advances in the characterization of the thermoelectrical effect in SiC at high temperatures. Discussing several desirable features of thermoelectrical SiC sensors and recent developments in these sensors, the book provides useful guidance on developing high sensitivity and linearity, fast-response SiC sensing devices based on thermoelectrical effects.

MEMS

MEMS PDF

Author: Mohamed Gad-el-Hak

Publisher: CRC Press

Published: 2005-11-29

Total Pages: 576

ISBN-13: 1420036556

DOWNLOAD EBOOK →

As our knowledge of microelectromechanical systems (MEMS) continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection

Amorphous Silicon Carbide Thin Films

Amorphous Silicon Carbide Thin Films PDF

Author: Mariana Amorim Fraga

Publisher:

Published: 2011

Total Pages: 0

ISBN-13: 9781613247747

DOWNLOAD EBOOK →

Silicon carbide (SiC) has been described as a suitable semiconductor material to use in MEMS and electronic devices for harsh environments. In recent years, many developments in SiC technology as bulk growth, materials processing, electronic devices and sensors have been shown. Moreover, some studies show the synthesis, characterisation and processing of crystalline SiC films. However, few works have investigated the potential of amorphous silicon carbide (a-SiC) thin films for sensors applications. This book presents fundamentals of amorphous silicon carbide thin films and their applications in piezoresistive sensors for high temperature applications.