Sequential Logic Testing and Verification

Sequential Logic Testing and Verification PDF

Author: Abhijit Ghosh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 224

ISBN-13: 1461536464

DOWNLOAD EBOOK →

In order to design and build computers that achieve and sustain high performance, it is essential that reliability issues be considered care fully. The problem has several aspects. Certainly, considering reliability implies that an engineer must be able to analyze how design decisions affect the incidence of failure. For instance, in order design reliable inte gritted circuits, it is necessary to analyze how decisions regarding design rules affect the yield, i.e., the percentage of functional chips obtained by the manufacturing process. Of equal importance in producing reliable computers is the detection of failures in its Very Large Scale Integrated (VLSI) circuit components, caused by errors in the design specification, implementation, or manufacturing processes. Design verification involves the checking of the specification of a design for correctness prior to carrying out an implementation. Implementation verification ensures that the manual design or automatic synthesis process is correct, i.e., the mask-level description correctly implements the specification. Manufacture test involves the checking of the complex fabrication process for correctness, i.e., ensuring that there are no manufacturing defects in the integrated circuit. It should be noted that all the above verification mechanisms deal not only with verifying the functionality of the integrated circuit but also its performance.

Formal Equivalence Checking and Design Debugging

Formal Equivalence Checking and Design Debugging PDF

Author: Shi-Yu Huang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 238

ISBN-13: 1461556937

DOWNLOAD EBOOK →

Formal Equivalence Checking and Design Debugging covers two major topics in design verification: logic equivalence checking and design debugging. The first part of the book reviews the design problems that require logic equivalence checking and describes the underlying technologies that are used to solve them. Some novel approaches to the problems of verifying design revisions after intensive sequential transformations such as retiming are described in detail. The second part of the book gives a thorough survey of previous and recent literature on design error diagnosis and design error correction. This part also provides an in-depth analysis of the algorithms used in two logic debugging software programs, ErrorTracer and AutoFix, developed by the authors. From the Foreword: `With the adoption of the static sign-off approach to verifying circuit implementations the application-specific integrated circuit (ASIC) industry will experience the first radical methodological revolution since the adoption of logic synthesis. Equivalence checking is one of the two critical elements of this methodological revolution. This book is timely for either the designer seeking to better understand the mechanics of equivalence checking or for the CAD researcher who wishes to investigate well-motivated research problems such as equivalence checking of retimed designs or error diagnosis in sequential circuits.' Kurt Keutzer, University of California, Berkeley

Sequential Logic Synthesis

Sequential Logic Synthesis PDF

Author: Pranav Ashar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 238

ISBN-13: 1461536286

DOWNLOAD EBOOK →

3. 2 Input Encoding Targeting Two-Level Logic . . . . . . . . 27 3. 2. 1 One-Hot Coding and Multiple-Valued Minimization 28 3. 2. 2 Input Constraints and Face Embedding 30 3. 3 Satisfying Encoding Constraints . . . . . . . 32 3. 3. 1 Definitions . . . . . . . . . . . . . . . 32 3. 3. 2 Column-Based Constraint Satisfaction 33 3. 3. 3 Row-Based Constraint Satisfaction . . 37 3. 3. 4 Constraint Satisfaction Using Dichotomies . 38 3. 3. 5 Simulated Annealing for Constraint Satisfaction 41 3. 4 Input Encoding Targeting Multilevel Logic. . 43 3. 4. 1 Kernels and Kernel Intersections . . . 44 3. 4. 2 Kernels and Multiple-Valued Variables 46 3. 4. 3 Multiple-Valued Factorization. . . . . 48 3. 4. 4 Size Estimation in Algebraic Decomposition . 53 3. 4. 5 The Encoding Step . 54 3. 5 Conclusion . . . . . . . . . 55 4 Encoding of Symbolic Outputs 57 4. 1 Heuristic Output Encoding Targeting Two-Level Logic. 59 4. 1. 1 Dominance Relations. . . . . . . . . . . . . . . . 59 4. 1. 2 Output Encoding by the Derivation of Dominance Relations . . . . . . . . . . . . . . . . . . . . . 60 . . 4. 1. 3 Heuristics to Minimize the Number of Encoding Bits . . . . . . . . . . . . 64 4. 1. 4 Disjunctive Relationships . . . . . . . . . . . 65 4. 1. 5 Summary . . . . . . . . . . . . . . . . . . 66 . . 4. 2 Exact Output Encoding Targeting Two-Level Logic. 66 4. 2. 1 Generation of Generalized Prime Implicants . 68 4. 2. 2 Selecting a Minimum Encodeable Cover . . . 68 4. 2. 3 Dominance and Disjunctive Relationships to S- isfy Constraints . . . . . . . . . . . 70 4. 2. 4 Constructing the Optimized Cover 73 4. 2. 5 Correctness of the Procedure . . 73 4. 2. 6 Multiple Symbolic Outputs . . .

Design Automation for Timing-Driven Layout Synthesis

Design Automation for Timing-Driven Layout Synthesis PDF

Author: S. Sapatnekar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 285

ISBN-13: 1461531780

DOWNLOAD EBOOK →

Moore's law [Noy77], which predicted that the number of devices in tegrated on a chip would be doubled every two years, was accurate for a number of years. Only recently has the level of integration be gun to slow down somewhat due to the physical limits of integration technology. Advances in silicon technology have allowed Ie design ers to integrate more than a few million transistors on a chip; even a whole system of moderate complexity can now be implemented on a single chip. To keep pace with the increasing complexity in very large scale integrated (VLSI) circuits, the productivity of chip designers would have to increase at the same rate as the level of integration. Without such an increase in productivity, the design of complex systems might not be achievable within a reasonable time-frame. The rapidly increasing complexity of VLSI circuits has made de- 1 2 INTRODUCTION sign automation an absolute necessity, since the required increase in productivity can only be accomplished with the use of sophisticated design tools. Such tools also enable designers to perform trade-off analyses of different logic implementations and to make well-informed design decisions.

Testing and Diagnosis of VLSI and ULSI

Testing and Diagnosis of VLSI and ULSI PDF

Author: F. Lombardi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 531

ISBN-13: 9400914172

DOWNLOAD EBOOK →

This volume contains a collection of papers presented at the NATO Advanced Study Institute on ·Testing and Diagnosis of VLSI and ULSI" held at Villa Olmo, Como (Italy) June 22 -July 3,1987. High Density technologies such as Very-Large Scale Integration (VLSI), Wafer Scale Integration (WSI) and the not-so-far promises of Ultra-Large Scale Integration (ULSI), have exasperated the problema associated with the testing and diagnosis of these devices and systema. Traditional techniques are fast becoming obsolete due to unique requirements such as limited controllability and observability, increasing execution complexity for test vector generation and high cost of fault simulation, to mention just a few. New approaches are imperative to achieve the highly sought goal of the • three months· turn around cycle time for a state-of-the-art computer chip. The importance of testing and diagnostic processes is of primary importance if costs must be kept at acceptable levels. The objective of this NATO-ASI was to present, analyze and discuss the various facets of testing and diagnosis with respect to both theory and practice. The contents of this volume reflect the diversity of approaches currently available to reduce test and diagnosis time. These approaches are described in a concise, yet clear way by renowned experts of the field. Their contributions are aimed at a wide readership: the uninitiated researcher will find the tutorial chapters very rewarding. The expert wiII be introduced to advanced techniques in a very comprehensive manner.

Embedded Systems Handbook 2-Volume Set

Embedded Systems Handbook 2-Volume Set PDF

Author: Richard Zurawski

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 1503

ISBN-13: 1420074113

DOWNLOAD EBOOK →

During the past few years there has been an dramatic upsurge in research and development, implementations of new technologies, and deployments of actual solutions and technologies in the diverse application areas of embedded systems. These areas include automotive electronics, industrial automated systems, and building automation and control. Comprising 48 chapters and the contributions of 74 leading experts from industry and academia, the Embedded Systems Handbook, Second Edition presents a comprehensive view of embedded systems: their design, verification, networking, and applications. The contributors, directly involved in the creation and evolution of the ideas and technologies presented, offer tutorials, research surveys, and technology overviews, exploring new developments, deployments, and trends. To accommodate the tremendous growth in the field, the handbook is now divided into two volumes. New in This Edition: Processors for embedded systems Processor-centric architecture description languages Networked embedded systems in the automotive and industrial automation fields Wireless embedded systems Embedded Systems Design and Verification Volume I of the handbook is divided into three sections. It begins with a brief introduction to embedded systems design and verification. The book then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Networked Embedded Systems Volume II focuses on selected application areas of networked embedded systems. It covers automotive field, industrial automation, building automation, and wireless sensor networks. This volume highlights implementations in fast-evolving areas which have not received proper coverage in other publications. Reflecting the unique functional requirements of different application areas, the contributors discuss inter-node communication aspects in the context of specific applications of networked embedded systems.