Scattering And Diffraction In Physical Optics (2nd Edition)

Scattering And Diffraction In Physical Optics (2nd Edition) PDF

Author: Manuel Nieto Vesperinas

Publisher: World Scientific Publishing Company

Published: 2006-06-01

Total Pages: 455

ISBN-13: 9813106522

DOWNLOAD EBOOK →

This book presents a comprehensive tutorial on propagation, diffraction and scattering problems from the basic principles of physical optics. Beginning with the fundamental differential and integral equations for wavefields, the text presents an exhaustive discussion on the extinction theorem as a non-local boundary condition; this has been extensively employed for the rigorous solution of scattering and diffraction problems.There is also an in-depth presentation of the topic of scattering from rough surfaces, in particular the phenomenon of enhanced backscattering, as well as a detailed development of the angular spectrum representation of fields leading to questions on non-diffraction beams. Of key interest in near field optical microscopy and nanooptics, the S-matrix theory based on the angular spectrum for propagating components and the recently discovered properties of the S-matrix for evanescent components of wavefields are considered. In addition, the book deals with the healing effect of phase conjugation on waves, and focuses on some applications concerning the relationship with time reversal.Readers will also find discussions on image recovery from partial information data (phase problems and super-resolution problems), as well as a chapter on the fundamentals of near field optical microscopy techniques, including the hot topic of propagation in negative index media.

Scattering and Diffraction in Physical Optics

Scattering and Diffraction in Physical Optics PDF

Author: M. Nieto-Vesperinas

Publisher: Wiley-Interscience

Published: 1991

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK →

Beginning with the basic principles, this book presents a tutorial and comprehensive treatment of the modern concepts of physical optics in connection with diffraction and scattering problems. Both graduate students and research scientists will benefit from this unified selection of up-to-date topics, so far only available in course notes and research papers.

Diffraction Physics

Diffraction Physics PDF

Author: J.M. Cowley

Publisher: Elsevier

Published: 1995-12-05

Total Pages: 499

ISBN-13: 0080530397

DOWNLOAD EBOOK →

The first edition of this highly successful book appeared in 1975 and evolved from lecture notes for classes in physical optics, diffraction physics and electron microscopy given to advanced undergraduate and graduate students. The book deals with electron diffraction and diffraction from disordered or imperfect crystals and employed an approach using the Fourier transform from the beginning instead of as an extension of a Fourier series treatment. This third revised edition is a considerably rewritten and updated version which now includes all important developments which have taken place in recent years.

Fundamentals of the Physical Theory of Diffraction

Fundamentals of the Physical Theory of Diffraction PDF

Author: Pyotr Ya. Ufimtsev

Publisher: John Wiley & Sons

Published: 2007-02-09

Total Pages: 349

ISBN-13: 0470109009

DOWNLOAD EBOOK →

This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.

Electromagnetic Radiation, Scattering, and Diffraction

Electromagnetic Radiation, Scattering, and Diffraction PDF

Author: Prabhakar H. Pathak

Publisher: John Wiley & Sons

Published: 2021-12-07

Total Pages: 1156

ISBN-13: 1119810531

DOWNLOAD EBOOK →

Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.

Diffraction Physics

Diffraction Physics PDF

Author: John Maxwell Cowley

Publisher: North-Holland

Published: 1981

Total Pages: 866

ISBN-13:

DOWNLOAD EBOOK →

The first edition of this highly successful book appeared in 1975 and evolved from lecture notes for classes in physical optics, diffraction physics and electron microscopy given to advanced undergraduate and graduate students. The book deals with electron diffraction and diffraction from disordered or imperfect crystals and employed an approach using the Fourier transform from the beginning instead of as an extension of a Fourier series treatment.This third revised edition is a considerably rewritten and updated version which now includes all important developments which have taken place in recent years.