High Temperature Electronics

High Temperature Electronics PDF

Author: F. Patrick McCluskey

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 279

ISBN-13: 1351440802

DOWNLOAD EBOOK →

The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.

High-Temperature Electronics

High-Temperature Electronics PDF

Author: Randall Kirschman

Publisher: Wiley-IEEE Press

Published: 1998-09-01

Total Pages: 0

ISBN-13: 9780780334779

DOWNLOAD EBOOK →

"HIGH-TEMPERATURE ELECTRONICS provides expert coverage of the applications, characteristics, design, selection, and operation of electronic devices and circuits at temperatures above the conventional limit of 125 degrees Celsius. This edited volume contains approximately 100 key reprinted papers covering a wide range of topics related to high-temperature electronics, eight invited papers, extensive references, and a comprehensive bibliography. Containing more than 200 pages of new material, it brings the reader a well-rounded review of high-temperature electronics from its beginnings decades ago through the present and beyond to possible future technologies. The scope of HIGH TEMPERATURE ELECTRONICS includes active components from standard and advanced semiconductor materials, passive components, as well as technologies for metallizations, interconnections, and the assembly and packaging of electronic components. This book will provide active researchers, technology developers, managers, materials scientists, and advanced students with a sound fundamental grounding in high-temperature electronics technology." Sponsored by: IEEE Components, Packaging, and Manufacturing Technology Society.

High Temperature Electronics Design for Aero Engine Controls and Health Monitoring

High Temperature Electronics Design for Aero Engine Controls and Health Monitoring PDF

Author: Lucian Stoica

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 161

ISBN-13: 1000795454

DOWNLOAD EBOOK →

There is a growing desire to install electronic power and control systems in high temperature harsh environments to improve the accuracy of critical measurements, reduce the amount of cabling and to eliminate cooling systems. Typical target applications include electronics for energy exploration, power generation and control systems. Technical topics presented in this book include:• High temperature electronics market• High temperature devices, materials and assembly processes• Design, manufacture and testing of multi-sensor data acquisition system for aero-engine control• Future applications for high temperature electronicsHigh Temperature Electronics Design for Aero Engine Controls and Health Monitoring contains details of state of the art design and manufacture of electronics targeted towards a high temperature aero-engine application. High Temperature Electronics Design for Aero Engine Controls and Health Monitoring is ideal for design, manufacturing and test personnel in the aerospace and other harsh environment industries as well as academic staff and master/research students in electronics engineering, materials science and aerospace engineering.

Influence of Temperature on Microelectronics and System Reliability

Influence of Temperature on Microelectronics and System Reliability PDF

Author: Pradeep Lall

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 332

ISBN-13: 0429605595

DOWNLOAD EBOOK →

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The

Low Temperature Electronics

Low Temperature Electronics PDF

Author: Edmundo A. Gutierrez-D.

Publisher: Academic Press

Published: 2001

Total Pages: 985

ISBN-13: 0123106753

DOWNLOAD EBOOK →

Summarizes the advances in cryoelectronics starting from the fundamentals in physics and semiconductor devices to electronic systems, hybrid superconductor-semiconductor technologies, photonic devices, cryocoolers and thermal management. This book provides an exploration of the theory, research, and technologies related to cryoelectronics.

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF

Author: Milton Ohring

Publisher: Academic Press

Published: 2014-10-14

Total Pages: 759

ISBN-13: 0080575528

DOWNLOAD EBOOK →

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Die-Attach Materials for High Temperature Applications in Microelectronics Packaging

Die-Attach Materials for High Temperature Applications in Microelectronics Packaging PDF

Author: Kim S. Siow

Publisher: Springer

Published: 2019-01-29

Total Pages: 279

ISBN-13: 3319992562

DOWNLOAD EBOOK →

This book presents the scientific principles, processing conditions, probable failure mechanisms, and a description of reliability performance and equipment required for implementing high-temperature and lead-free die attach materials. In particular, it addresses the use of solder alloys, silver and copper sintering, and transient liquid-phase sintering. While different solder alloys have been used widely in the microelectronics industry, the implementation of sintering silver and transient liquid-phase sintering remains limited to a handful of companies. Hence, the book devotes many chapters to sintering technologies, while simultaneously providing only a cursory coverage of the more widespread techniques employing solder alloys. Addresses the differences between sintering and soldering (the current die-attach technologies), thereby comprehensively addressing principles, methods, and performance of these high-temperature die-attach materials; Emphasizes the industrial perspective, with chapters written by engineers who have hands-on experience using these technologies; Baker Hughes, Bosch and ON Semiconductor, are represented as well as materials suppliers such as Indium; Simultaneously provides the detailed science underlying these technologies by leading academic researchers in the field.

High Temperature Electronics

High Temperature Electronics PDF

Author: F. Patrick McCluskey

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 341

ISBN-13: 1351440810

DOWNLOAD EBOOK →

The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.