Optimization in Science and Engineering

Optimization in Science and Engineering PDF

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2014-05-29

Total Pages: 611

ISBN-13: 1493908081

DOWNLOAD EBOOK →

Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos’s past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos’s work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: Deterministic global optimization Variational inequalities and equilibrium problems Approximation and complexity in numerical optimization Non-smooth optimization Statistical models and data mining Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.

Constructive Nonsmooth Analysis and Related Topics

Constructive Nonsmooth Analysis and Related Topics PDF

Author: Vladimir F. Demyanov

Publisher: Springer Science & Business Media

Published: 2013-11-12

Total Pages: 258

ISBN-13: 1461486157

DOWNLOAD EBOOK →

This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.

Advanced Boundary Element Methods

Advanced Boundary Element Methods PDF

Author: Joachim Gwinner

Publisher: Springer

Published: 2018-07-28

Total Pages: 661

ISBN-13: 3319920014

DOWNLOAD EBOOK →

This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods – efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.

Applied Mathematics in Tunisia

Applied Mathematics in Tunisia PDF

Author: Aref Jeribi

Publisher: Birkhäuser

Published: 2015-10-05

Total Pages: 406

ISBN-13: 331918041X

DOWNLOAD EBOOK →

This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology. Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia. Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics. These proceedings aim to foster and develop further growth in all areas of applied mathematics.

Hemivariational Inequalities

Hemivariational Inequalities PDF

Author: Panagiotis D. Panagiotopoulos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 453

ISBN-13: 3642516777

DOWNLOAD EBOOK →

The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.

Variational-Hemivariational Inequalities with Applications

Variational-Hemivariational Inequalities with Applications PDF

Author: Mircea Sofonea

Publisher: CRC Press

Published: 2017-10-23

Total Pages: 412

ISBN-13: 1351649299

DOWNLOAD EBOOK →

This research monograph represents an outcome of the cross-fertilization between nonlinear functional analysis and mathematical modelling, and demonstrates its application to solid and contact mechanics. Based on authors’ original results, it introduces a general fixed point principle and its application to various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully-selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, it is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics.

Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities PDF

Author: Stanisław Migórski

Publisher: Springer Science & Business Media

Published: 2012-09-18

Total Pages: 293

ISBN-13: 146144232X

DOWNLOAD EBOOK →

This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.