Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry PDF

Author: Izzet Coskun

Publisher: American Mathematical Soc.

Published: 2017-07-12

Total Pages: 370

ISBN-13: 1470435578

DOWNLOAD EBOOK →

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry PDF

Author: Lucia Caporaso

Publisher: Cambridge University Press

Published: 2012-03-19

Total Pages: 437

ISBN-13: 052176825X

DOWNLOAD EBOOK →

This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

New Trends in Algebraic Geometry

New Trends in Algebraic Geometry PDF

Author: Klaus Hulek

Publisher: Cambridge University Press

Published: 1999-05-13

Total Pages: 500

ISBN-13: 9780521646598

DOWNLOAD EBOOK →

This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.

Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry PDF

Author: Izzet Coskun

Publisher:

Published: 2017

Total Pages: 386

ISBN-13: 9781470441210

DOWNLOAD EBOOK →

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6-10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic p and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions

Recent Progress in Arithmetic and Algebraic Geometry

Recent Progress in Arithmetic and Algebraic Geometry PDF

Author: Yasuyuki Kachi

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 186

ISBN-13: 0821834010

DOWNLOAD EBOOK →

This proceedings volume resulted from the John H. Barrett Memorial Lecture Series held at the University of Tennessee (Knoxville). The articles reflect recent developments in algebraic geometry. It is suitable for graduate students and researchers interested in algebra and algebraic geometry.

Current Topics in Complex Algebraic Geometry

Current Topics in Complex Algebraic Geometry PDF

Author: Charles Herbert Clemens

Publisher: Cambridge University Press

Published: 1995

Total Pages: 180

ISBN-13: 9780521562447

DOWNLOAD EBOOK →

The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.

Recent Advances in Real Algebraic Geometry and Quadratic Forms

Recent Advances in Real Algebraic Geometry and Quadratic Forms PDF

Author: Bill Jacob

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 416

ISBN-13: 0821851543

DOWNLOAD EBOOK →

The papers collected here present an up-to-date record of the current research developments in the fields of real algebraic geometry and quadratic forms. Articles range from the technical to the expository and there are also indications to new research directions.

Recent Developments in Algebraic Geometry

Recent Developments in Algebraic Geometry PDF

Author: Hamid Abban

Publisher: Cambridge University Press

Published: 2022-09-30

Total Pages: 368

ISBN-13: 1009190822

DOWNLOAD EBOOK →

Written in celebration of Miles Reid's 70th birthday, this illuminating volume contains 11 papers by leading mathematicians in and around algebraic geometry, broadly related to the themes and interests of Reid's varied career. Just as in Reid's own scientific output, some of the papers give comprehensive accounts of the state of the art of foundational matters, while others give expositions of subject areas or techniques in concrete terms. Reid has been one of the major expositors of algebraic geometry and a great influence on many in this field – this book hopes to inspire a new generation of graduate students and researchers in his tradition.

Recent Trends in Algebraic Combinatorics

Recent Trends in Algebraic Combinatorics PDF

Author: Hélène Barcelo

Publisher: Springer

Published: 2019-01-21

Total Pages: 362

ISBN-13: 3030051412

DOWNLOAD EBOOK →

This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.

Positivity in Algebraic Geometry I

Positivity in Algebraic Geometry I PDF

Author: R.K. Lazarsfeld

Publisher: Springer Science & Business Media

Published: 2004-08-24

Total Pages: 414

ISBN-13: 9783540225331

DOWNLOAD EBOOK →

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.