Properties Of Single Organic Molecules On Crystal Surfaces

Properties Of Single Organic Molecules On Crystal Surfaces PDF

Author: Peter Grutter

Publisher: World Scientific

Published: 2006-05-03

Total Pages: 443

ISBN-13: 1908979992

DOWNLOAD EBOOK →

Within nanoscience, an emerging discipline is the study of the physics and chemistry of single molecules. Molecules may be considered as the ultimate building blocks, and are therefore interesting for the development of molecular devices and for surface functionalization. Thus, it is interesting to study their properties when adsorbed on a suitable substrate such as a solid or crystal surface, and also for their potential applications in nano- or molecular-electronics and nanosensing. Investigations have been made possible by the advent of high resolution surface imaging and characterization techniques, commonly referred to as Scanning Probe Microscopes.This book focuses on the fascinating properties of the single molecules, and the difference between single molecules and ensembles of molecules is emphasized. As the first book intended for graduate courses in the field, after each chapter, students should be able to answer the question: “What physical or chemical properties do you learn from a single molecule in this particular context?” Contributed by experts across the disciplines, the book provides useful reference material for specialized practitioners in surface science, nanoscience and nanoelectronics.

STM Investigation of Molecular Architectures of Porphyrinoids on a Ag(111) Surface

STM Investigation of Molecular Architectures of Porphyrinoids on a Ag(111) Surface PDF

Author: Florian Buchner

Publisher: Springer Science & Business Media

Published: 2010-11-09

Total Pages: 182

ISBN-13: 3642148409

DOWNLOAD EBOOK →

The functionalization of surfaces on the nanoscale is one of the most fascinating and at the same time challenging topics in science. It is the key to tailoring catalysts, sensors, or devices for solar energy conversion, whose functional principle is based on the interaction of an active solid surface with another (liquid or gaseous) phase. As an example, planar transition metal complexes adsorbed on solid supports are promising candidates for novel heterogeneous catalysts. An important feature of these catalysts, compared to supported metal clusters, is the fact that the active sites, i. e. , the coordinated metal centers with their vacant axial coordination sites, are well de?ned and uniform. Metalloporphyrinoids are particularly suitable in this respect because they combine a structure forming element—the rigid molecular frame, which often induces long range order—with an active site, the coordinated metal ion. Its planar coordination environment leaves two axial coordination sites available for additional ligands. If adsorbed on a surface, one of these axial sites is occupied by the underlying substrate. The resulting electronic interaction with the surface can be used to tailor the electronic structure and thereby the reactivity of the metal center. The remaining site is free for the attachment of molecules (sensor functionality) and/or operates as a reaction center (single-site catalysis). Prototype examples are omnipresent in nature, where in particular metallo-tetrapyrrols play a decisive role in important biological processes, with the most prominent examples being iron porphyrins in heme, magnesium porphyrins in chlorophyll, and cobalt corrin in vitamin B12.