Understanding Quartz Crystals and Oscillators

Understanding Quartz Crystals and Oscillators PDF

Author: Ramon M. Cerda

Publisher: Artech House

Published: 2014-05-01

Total Pages: 325

ISBN-13: 1608071189

DOWNLOAD EBOOK →

Quartz, unique in its chemical, electrical, mechanical, and thermal properties, is used as a frequency control element in applications where stability of frequency is an absolute necessity. Without crystal controlled transmission, radio and television would not be possible in their present form. The quartz crystals allow the individual channels in communication systems to be spaced closer together to make better use of one of most precious resources -- wireless bandwidth. This book describes the characteristics of the art of crystal oscillator design, including how to specify and select crystal oscillators. While presenting various varieties of crystal oscillators, this resource also provides you with useful MathCad and Genesys simulations.

Low-Power Crystal and MEMS Oscillators

Low-Power Crystal and MEMS Oscillators PDF

Author: Eric Vittoz

Publisher: Springer Science & Business Media

Published: 2010-08-03

Total Pages: 219

ISBN-13: 9048193958

DOWNLOAD EBOOK →

Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.

Electrical Oscillators

Electrical Oscillators PDF

Author: Nikola Tesla

Publisher: Simon and Schuster

Published: 2015-08-24

Total Pages: 22

ISBN-13: 1681463539

DOWNLOAD EBOOK →

Nikola Tesla was a genius who revolutionized how the world looks at electricity. In 1893 he patented an electro-mechanical oscillator as a steam-powered electric generator. By his own account, one version of the oscillator caused an earthquake in New York City in 1898, for which it was accorded the moniker, "Tesla's earthquake machine."

Crystal Oscillator Design and Temperature Compensation

Crystal Oscillator Design and Temperature Compensation PDF

Author: Marvin Frerking

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 9401160562

DOWNLOAD EBOOK →

Crystal oscillators have been in use now for well over SO years-one of the first was built by W. G. Cady in 1921. Today, millions of them are made every year, covering a range of frequencies from a few Kilohertz to several hundred Mega hertz and a range of stabilities from a fraction of one percent to a few parts in ten to the thirteenth, with most of them, by far, still in the range of several tens of parts per million.Their major application has long been the stabilization of fre quencies in transmitters and receivers, and indeed, the utilization of the frequency spectrum would be in utter chaos, and the communication systems as we know them today unthinkable,'without crystal oscillators. With the need to accommodate ever increasing numbers of users in a limited spectrum space, this traditional application will continue to grow for the fore seeable future, and ever tighter tolerances will have to be met by an ever larger percentage of these devices.

Piezoelectric MEMS Resonators

Piezoelectric MEMS Resonators PDF

Author: Harmeet Bhugra

Publisher: Springer

Published: 2017-01-09

Total Pages: 424

ISBN-13: 3319286889

DOWNLOAD EBOOK →

This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.