Quantum Monte Carlo Methods in Physics and Chemistry

Quantum Monte Carlo Methods in Physics and Chemistry PDF

Author: M.P. Nightingale

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 488

ISBN-13: 9780792355519

DOWNLOAD EBOOK →

In recent years there has been a considerable growth in interest in Monte Carlo methods, and quantum Monte Carlo methods in particlular. Clearly, the ever-increasing computational power available to researchers, has stimulated the development of improved algorithms, and almost all fields in computational physics and chemistry are affected by their applications. Here we just mention some fields that are covered in the lecture notes contained in this volume, viz. electronic structure studies of atoms, molecules and solids, nuclear structure, and low- or zero-temperature studies of strongly-correlated quantum systems, both of the continuum and lattice variety, and cooperative phenomena in classical systems. Although each area of application may have its own peculiarities, requiring specialized solutions, all share the same basic methodology. It was with the intention of bringing together researchers and students from these various areas that the NATO Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry was held at Cornell University from 12 to 24 July, 1998. This book contains material presented at the Institute in a series of mini courses in quantum Monte Carlo methods. The program consisted of lectures predominantly of a pedagogical nature, and of more specialized seminars. The levels varied from introductory to advanced, and from basic methods to applications; the program was intended for an audience working towards the Ph.D. level and above. Despite the essentially pedagogic nature of the Institute, several of the lectures and seminars contained in this volume present recent developments not previously published.

Quantum Monte Carlo Methods in Physics and Chemistry

Quantum Monte Carlo Methods in Physics and Chemistry PDF

Author: M.P. Nightingale

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 486

ISBN-13: 9780792355526

DOWNLOAD EBOOK →

This book contains lectures on the basic theory and applications of quantum Monte Carlo methods, with contributions written by authorities in the field. Although tutorial in nature, it includes current developments. Both continuum systems and lattice models are covered. The applications include atomic, molecular, and solid state physics, statistical and low-temperature physics, and nuclear structure. Suitable for Ph.D. students and beyond.

Monte Carlo Methods in Quantum Problems

Monte Carlo Methods in Quantum Problems PDF

Author: M.H. Kalos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 292

ISBN-13: 940096384X

DOWNLOAD EBOOK →

Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.

Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics PDF

Author: Kurt Binder

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 201

ISBN-13: 366230273X

DOWNLOAD EBOOK →

When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.

Monte Carlo Methods in Ab Initio Quantum Chemistry

Monte Carlo Methods in Ab Initio Quantum Chemistry PDF

Author: B L Hammond

Publisher: World Scientific

Published: 1994-03-29

Total Pages: 320

ISBN-13: 9814506753

DOWNLOAD EBOOK →

This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential. Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study.Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release node Monte Carlo.Commentary on the important features that distinguish this stochastic approach from ab initio methods. Contents:Introduction to Monte Carlo MethodsVariational MethodsGreen's Function MethodsTreating FermionsVariational Trial FunctionsExcited StatesElectronic PropertiesDerivatives and Finite DifferencesHeavy AtomsAtomic UnitsEvaluating the Trial FunctionSample Diffusion Monte Carlo Program Readership: Chemists and physicists.

An Introduction to Quantum Monte Carlo Methods

An Introduction to Quantum Monte Carlo Methods PDF

Author: Tao Pang

Publisher: Morgan & Claypool Publishers

Published: 2016-12-07

Total Pages: 80

ISBN-13: 1681741091

DOWNLOAD EBOOK →

Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.

Monte Carlo Methods in Ab Initio Quantum Chemistry

Monte Carlo Methods in Ab Initio Quantum Chemistry PDF

Author: B. L. Hammond

Publisher: World Scientific

Published: 1994

Total Pages: 320

ISBN-13: 9810203217

DOWNLOAD EBOOK →

This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are:

Quantum Monte Carlo

Quantum Monte Carlo PDF

Author: James B. Anderson

Publisher: OUP USA

Published: 2007-04-05

Total Pages: 200

ISBN-13: 0195310101

DOWNLOAD EBOOK →

Monte Carlo methods are a class of computational algorithms for simulating the behavior of a wide range of various physical and mathematical systems (with many variables). Their utility has increased with general availability of fast computers, and new applications are continually forthcoming. The basic concepts of Monte Carlo are both simple and straightforward and rooted in statistics and probability theory, their defining characteristic being that the methodology relies on random or pseudo-random sequences of numbers. It is a technique of numerical analysis based on the approximate solution of a problem using repeated sampling experiments and observing the proportion of times a given property is satisfied. The term Monte Carlo was first used to describe calculational methods based on chance in the 1940s, but the methods themselves preceded the term by as much as a century. Quantum Monte Carlo (QMC) first appeared in 1982 and similarly was preceded by development of the related calculational methodology. The success of QMC methods over the past few decades has been remarkable, and this book will clearly demonstrate that success in its discussion of applications. For isolated molecules, the basic material of chemistry, QMC methods have produced exact solutions of the Schroedinger equation for very small systems and the most accurate solutions available for very large systems. The range of applications is impressive: folding of protein molecules, interactions in liquids, structure modeling in crystals and enzymes, quantum dots, designing heat shields and aerodynamic forms, architecture, design, business and economics, and even cinema and video games (3D modeling). This book takes a similar approach to Henry Schaefers classic book Quantum Chemistry (OUP, 1984 now a Dover edition), collecting summaries of some of the most important papers in the quantum Monte Carlo literature, tying everything together with analysis and discussion of applications. Quantum Monte Carlo is a reference book for quantum Monte Carlo applications, belonging near the desk of every quantum chemist, physicist, and a wide range of scientists and engineers across many disciplines, destined to become a classic.

Quantum Monte Carlo Methods

Quantum Monte Carlo Methods PDF

Author: James Gubernatis

Publisher: Cambridge University Press

Published: 2016-06-02

Total Pages: 503

ISBN-13: 1316483126

DOWNLOAD EBOOK →

Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.

Recent Advances in Quantum Monte Carlo Methods

Recent Advances in Quantum Monte Carlo Methods PDF

Author: W. A. Lester

Publisher: World Scientific

Published: 1997

Total Pages: 254

ISBN-13: 9789810230098

DOWNLOAD EBOOK →

The quantum Monte Carlo (QMC) method is gaining interest as a complement to basis set ab initio methods in cases where high accuracy computation of atomic and molecular properties is desired. This volume focuses on recent advances in this area. QMC as used here refers to methods that directly solve the Schr”dinger equation, for example, diffusion and Green's function Monte Carlo, as well as variational Monte Carlo. The latter is an approach to computing atomic and molecular properties by the Monte Carlo method that has fundamental similarities to basis set methods with the exception that the limitation to one-particle basis functions to facilitate integral evaluation is avoided. This feature makes possible the consideration of many-body wave functions containing explicitly interparticle distances ? a capability common to all variants of QMC.