Quantum Integrable Systems

Quantum Integrable Systems PDF

Author: Asesh Roy Chowdhury

Publisher: CRC Press

Published: 2004-01-28

Total Pages: 425

ISBN-13: 0203498011

DOWNLOAD EBOOK →

The study of integrable systems has opened new horizons in classical physics over the past few decades, particularly in the subatomic world. Yet despite the field now having reached a level of maturity, very few books provide an introduction to the field accessible to specialists and nonspecialists alike, and none offer a systematic survey of the m

Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems PDF

Author: Gleb Arutyunov

Publisher: Springer

Published: 2019-07-23

Total Pages: 414

ISBN-13: 303024198X

DOWNLOAD EBOOK →

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF

Author: Fabio Franchini

Publisher: Springer

Published: 2017-05-25

Total Pages: 180

ISBN-13: 3319484877

DOWNLOAD EBOOK →

This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

From Quantum Cohomology to Integrable Systems

From Quantum Cohomology to Integrable Systems PDF

Author: Martin A. Guest

Publisher: OUP Oxford

Published: 2008-03-13

Total Pages: 336

ISBN-13: 0191606960

DOWNLOAD EBOOK →

Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.

Integrability, Quantization, and Geometry: I. Integrable Systems

Integrability, Quantization, and Geometry: I. Integrable Systems PDF

Author: Sergey Novikov

Publisher: American Mathematical Soc.

Published: 2021-04-12

Total Pages: 516

ISBN-13: 1470455919

DOWNLOAD EBOOK →

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Introduction to Classical Integrable Systems

Introduction to Classical Integrable Systems PDF

Author: Olivier Babelon

Publisher: Cambridge University Press

Published: 2003-04-17

Total Pages: 622

ISBN-13: 9780521822671

DOWNLOAD EBOOK →

This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.

Lectures on Integrable Systems

Lectures on Integrable Systems PDF

Author: Jens Hoppe

Publisher: Springer Science & Business Media

Published: 2008-09-15

Total Pages: 109

ISBN-13: 3540472746

DOWNLOAD EBOOK →

Mainly drawing on explicit examples, the author introduces the reader to themost recent techniques to study finite and infinite dynamical systems. Without any knowledge of differential geometry or lie groups theory the student can follow in a series of case studies the most recent developments. r-matrices for Calogero-Moser systems and Toda lattices are derived. Lax pairs for nontrivial infinite dimensionalsystems are constructed as limits of classical matrix algebras. The reader will find explanations of the approach to integrable field theories, to spectral transform methods and to solitons. New methods are proposed, thus helping students not only to understand established techniques but also to interest them in modern research on dynamical systems.

New Trends in Quantum Integrable Systems

New Trends in Quantum Integrable Systems PDF

Author: Boris Feigin

Publisher: World Scientific

Published: 2014-05-14

Total Pages:

ISBN-13: 9814462926

DOWNLOAD EBOOK →

The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto Japan from 27 to 31 July 2009. As a continuation of the RIMS Research Project a Method of Algebraic Analysis in Integrable Systemsa in 2004 the workshop's aim was to cover exciting new developments that have emerged during the recent years.Collected here are research articles based on the talks presented at the workshop including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models integrable models in quantum field theory conformal field theory mathematical aspects of Bethe ansatz special functions and integrable differential/difference equations representation theory of infinite dimensional algebras integrable models and combinatorics.Through these topics the reader can learn about the most recent developments in the field of quantum integrable systems and related areas of mathematical physics."

Representation Theory, Mathematical Physics, and Integrable Systems

Representation Theory, Mathematical Physics, and Integrable Systems PDF

Author: Anton Alekseev

Publisher: Springer Nature

Published: 2022-02-05

Total Pages: 652

ISBN-13: 3030781488

DOWNLOAD EBOOK →

Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.