Quantum Heterostructures

Quantum Heterostructures PDF

Author: Vladimir Vasilʹevich Mitin

Publisher: Cambridge University Press

Published: 1999-07-13

Total Pages: 670

ISBN-13: 9780521636353

DOWNLOAD EBOOK →

Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.

Heterostructures and Quantum Devices

Heterostructures and Quantum Devices PDF

Author: Norman G. Einspruch

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 465

ISBN-13: 1483295176

DOWNLOAD EBOOK →

Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical engineering devices. The text covers existing technologies and future possibilities within a common framework of high-performance devices, which will have a more immediate impact on advanced semiconductor physics-particularly quantum effects-and will thus form the basis for longer-term technology development.

Quantum Dot Heterostructures

Quantum Dot Heterostructures PDF

Author: Dieter Bimberg

Publisher: John Wiley & Sons

Published: 1999-03-17

Total Pages: 350

ISBN-13: 9780471973881

DOWNLOAD EBOOK →

Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)

Quantum Wells, Wires and Dots

Quantum Wells, Wires and Dots PDF

Author: Paul Harrison

Publisher: John Wiley & Sons

Published: 2016-04-29

Total Pages: 624

ISBN-13: 1118923340

DOWNLOAD EBOOK →

Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: Properties of non-parabolic energy bands Matrix solutions of the Poisson and Schrödinger equations Critical thickness of strained materials Carrier scattering by interface roughness, alloy disorder and impurities Density matrix transport modelling Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is presented in a lucid style with easy to follow steps, illustrative examples and questions and computational problems in each chapter to help the reader build solid foundations of understanding to a level where they can initiate their own theoretical investigations. Suitable for postgraduate students of semiconductor and condensed matter physics, the book is essential to all those researching in academic and industrial laboratories worldwide. Instructors can contact the authors directly ([email protected] / [email protected]) for Solutions to the problems.

Antimonide-Related Strained-Layer Heterostructures

Antimonide-Related Strained-Layer Heterostructures PDF

Author: M. O. Manasreh

Publisher: CRC Press

Published: 2019-08-16

Total Pages: 523

ISBN-13: 1000717488

DOWNLOAD EBOOK →

Interest in antimonide-related heterostructures is burgeoning due to their applications as light sources, diode lasers, modulators, filters, switches, nonlinear optics, and field-defect transistors. This volume, featuring contributions from leading researchers in the field, is the first book to focus on antimonide-related topics. It offers to both the beginning student and the advanced researcher a comprehensive review of the state of the art in this exciting new area of research.

Introduction to Nanomaterials and Devices

Introduction to Nanomaterials and Devices PDF

Author: Omar Manasreh

Publisher: John Wiley & Sons

Published: 2011-11-16

Total Pages: 487

ISBN-13: 1118148401

DOWNLOAD EBOOK →

An invaluable introduction to nanomaterials and their applications Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots. Written by a renowned specialist in the field, this book features: An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials Information on the application of quantum mechanics to nanomaterial structures and quantum transport Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics An in-depth look at optical, electrical, and transport properties Coverage of electronic devices and optoelectronic devices Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.

2D Excitonic Materials and Devices

2D Excitonic Materials and Devices PDF

Author:

Publisher: Elsevier

Published: 2023-11-23

Total Pages: 270

ISBN-13: 0443193932

DOWNLOAD EBOOK →

Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. Provides the latest information on cancer research Offers outstanding and original reviews on a range of cancer research topics Serves as an indispensable reference for researchers and students alike

Silicon Quantum Integrated Circuits

Silicon Quantum Integrated Circuits PDF

Author: E. Kasper

Publisher: Springer Science & Business Media

Published: 2005-12-11

Total Pages: 367

ISBN-13: 3540263829

DOWNLOAD EBOOK →

Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.