Quantum Dot Photodetectors

Quantum Dot Photodetectors PDF

Author: Xin Tong

Publisher: Springer Nature

Published: 2021-09-17

Total Pages: 319

ISBN-13: 3030742709

DOWNLOAD EBOOK →

This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.

Quantum Dot Devices

Quantum Dot Devices PDF

Author: Zhiming M. Wang

Publisher: Springer Science & Business Media

Published: 2012-05-24

Total Pages: 375

ISBN-13: 1461435706

DOWNLOAD EBOOK →

Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors

Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors PDF

Author: Sourav Adhikary

Publisher: Springer

Published: 2017-09-06

Total Pages: 63

ISBN-13: 9811052905

DOWNLOAD EBOOK →

This book introduces some alternative methods for enhancing the performance of In(Ga)As/GaAs-based quantum dot infrared photodetectors (QDIPs). In(Ga)As/GaAs-based QDIPs and focal plane array (FPA) cameras have wide application in fields such as military and space science. The core of the study uses a combination of quaternary In0.21Al0.21Ga0.58As and GaAs spacer as a capping layer on In(Ga)As/GaAs quantum dots in the active region of the detector structure. For the purposes of optimization, three types of samples growths are considered with different capping thicknesses. The results presented include TEM, XRD and photoluminescence studies that compare combination barrier thickness and its effect on structural and optical properties. Compressive strain within the heterostructure, thermal stability in high temperature annealing, spectral response, shifts in PL peaks peak,and responsivity and detectivity are all considered. The results also present a narrow spectral width that was obtained by using InAs QDs which is very useful for third generation FPA camera application. The book details effect of post-growth rapid thermal annealing on device characteristics and methods to enhance responsivity and peak detectivity. The contents of this book will be useful to researchers and professionals alike.

Perovskite Quantum Dots

Perovskite Quantum Dots PDF

Author: Ye Zhou

Publisher: Springer Nature

Published: 2020-08-27

Total Pages: 374

ISBN-13: 9811566372

DOWNLOAD EBOOK →

This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.

Advances in Infrared Photodetectors

Advances in Infrared Photodetectors PDF

Author:

Publisher: Elsevier

Published: 2011-05-03

Total Pages: 385

ISBN-13: 0123813387

DOWNLOAD EBOOK →

Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. Written and edited by internationally renowned experts Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry

Quantum Dot Infrared Photodetectors Based on Structures with Potential Barriers

Quantum Dot Infrared Photodetectors Based on Structures with Potential Barriers PDF

Author: Li-Hsin Chien

Publisher:

Published: 2011

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK →

It is known that major restrictions of room-temperature semiconductor photodetectors and some other optoelectronic devices are caused by short photoelectron lifetime, which strongly reduces the photoresponse. Detectors based on nanostructures with potential barriers have the strong potential to overcome the limitations in quantum well photodetectors due to various possibilities for engineering of specific kinetic and transport properties. Here I review photocarrier kinetics in traditional quantum dot infrared photodetectors and present results of the investigations related to the quantum-dot (QD) structures with potential barriers created around dots and with collective barriers surrounding groups of quantum dots (planes, clusters etc). To optimize the photodetectors based on QD structures, I develop and exploit a model of the room-temperature QD photodetector. Using Monte-Carlo simulations, I investigate photoelectron capture and transit processes, as functions of selective doping of a QD structure, its geometry, and applied electric field. The simulation results demonstrate that the capture processes are substantially suppressed by the collective potential barriers around the groups of QDs. Detailed analysis shows that the effects of the electric field can be explained by electron heating, i.e. field effects become significant, when the shift of the electron temperature due to electron heating reaches the barrier height. Besides manageable photoelectron kinetics, which allows one to employ QDIP as an adaptive detector with changing parameters, the advanced QD structures will also provide high coupling to radiation, low generation-recombination noise, and high scalability.

Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures

Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures PDF

Author: Saumya Sengupta

Publisher: Springer

Published: 2017-08-04

Total Pages: 59

ISBN-13: 9811057028

DOWNLOAD EBOOK →

This book explores the effects of growth pause or ripening time on the properties of quantum dots(QDs). It covers the effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs. The effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs are discussed. The book offers insight into InAs/GaAs bilayer QD heterostructures with very thin spacer layers and discusses minimum spacer thickness required to grow electronically coupled bilayer QD heterostructures. These techniques make bilayer QD heterostructures a better choice over the single layer and uncoupled multilayer QD heterostructure. Finally, the book discusses sub-monolayer (SML) growth technique to grow QDs. This recent technique has been proven to improve the device performance significantly. The contents of this monograph will prove useful to researchers and professionals alike.

Technology of Quantum Devices

Technology of Quantum Devices PDF

Author: Manijeh Razeghi

Publisher: Springer Science & Business Media

Published: 2009-12-11

Total Pages: 570

ISBN-13: 1441910565

DOWNLOAD EBOOK →

Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.

Sensitive Solution-processed Quantum Dot Photodetectors

Sensitive Solution-processed Quantum Dot Photodetectors PDF

Author: Gerasimos Konstantatos

Publisher:

Published: 2008

Total Pages: 266

ISBN-13: 9780494580264

DOWNLOAD EBOOK →

Optical sensing for imaging applications has traditionally been enabled by single-crystalline photodetectors. This approach has dramatically curtailed monolithic integration of a variety of optically-sensitive materials onto silicon read-out circuits.The advent of solution-processed optoelectronic materials such as colloidal quantum dots offers the potential of a revolution in optoelectronics. Their solution-processibility enables low-cost monolithic integration with an arbitrary substrate. This dissertation presents the first high-sensitivity solution-processed photodetectors. It does so by leveraging the high degree of control offered by nanoscale materials engineering. Material processing routes are developed to achieve sufficient carrier mobility and sensitization that lead to high photoconductive gain up to 103 A/W, observed for the first time in soft materials. A method to remove charge-transport-inhibiting moieties from the nanocrystal surface is developed. Surface treatment procedures are then advanced to prolong the carrier lifetime and thus sensitize the material. The sequence of these processing stages is crucial for the noise performance of the device. Processing conditions that lead to high photoconductive gain and low noise current are then reported to achieve highly sensitive photodetectors with reported D* on the order 1013 Jones.The spectral tunability offered by colloidal quantum dots enables monolithic multispectral photodetectors. The material challenges, imposed by the behaviour of matter in the nanoscale, are addressed to report sensitive photodetectors in the visible and infrared parts of spectrum.Carrier lifetime determines the temporal response of a photoconductor. The abundance of trap states on the nanocrystal surface and their associated carrier lifetimes mandate careful attention in order to preserve the trap states that yield temporal response acceptable for imaging applications. It is shown for the first time that the temporal response of a quantum dot photoconductor can be tailored by careful control over surface chemistry. Materials species were identified as responsible for particular photocurrent temporal components. These findings are then exploited to isolate and remove surface species responsible for undesirably long time constants. A solution-processed photoconductive detector is reported that exhibits high sensitivity (D* ∼1012 Jones) and temporal response of 25 ms, suitable for imaging applications.