Quantum Dot Lasers

Quantum Dot Lasers PDF

Author: Victor Mikhailovich Ustinov

Publisher:

Published: 2003

Total Pages: 306

ISBN-13: 9780198526797

DOWNLOAD EBOOK →

The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Single Quantum Dots

Single Quantum Dots PDF

Author: Peter Michler

Publisher: Springer Science & Business Media

Published: 2003-12-09

Total Pages: 370

ISBN-13: 9783540140221

DOWNLOAD EBOOK →

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.

Quantum Dot Devices

Quantum Dot Devices PDF

Author: Zhiming M. Wang

Publisher: Springer Science & Business Media

Published: 2012-05-24

Total Pages: 375

ISBN-13: 1461435706

DOWNLOAD EBOOK →

Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

Ultrafast Lasers Based on Quantum Dot Structures

Ultrafast Lasers Based on Quantum Dot Structures PDF

Author: Edik U. Rafailov

Publisher: John Wiley & Sons

Published: 2011-04-08

Total Pages: 243

ISBN-13: 3527634495

DOWNLOAD EBOOK →

In this monograph, the authors address the physics and engineering together with the latest achievements of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices. Their approach encompasses a broad range of laser systems, while taking into consideration not only the physical and experimental aspects but also the much needed modeling tools, thus providing a holistic understanding of this hot topic.

Dynamics of Quantum Dot Lasers

Dynamics of Quantum Dot Lasers PDF

Author: Christian Otto

Publisher: Springer Science & Business Media

Published: 2014-01-21

Total Pages: 301

ISBN-13: 3319037862

DOWNLOAD EBOOK →

This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics PDF

Author: Kathy Lüdge

Publisher: John Wiley & Sons

Published: 2012-04-09

Total Pages: 412

ISBN-13: 3527639837

DOWNLOAD EBOOK →

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics PDF

Author: Edik U. Rafailov

Publisher: John Wiley & Sons

Published: 2013-12-30

Total Pages: 349

ISBN-13: 3527665609

DOWNLOAD EBOOK →

Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

Quantum Dot Lasers on Silicon

Quantum Dot Lasers on Silicon PDF

Author: Bozhang Dong

Publisher: Springer Nature

Published: 2023-02-04

Total Pages: 206

ISBN-13: 3031178270

DOWNLOAD EBOOK →

This book provides guidelines and design rules for developing high-performance, low-cost, and energy-efficient quantum-dot (QD) lasers for silicon photonic integrated circuits (PIC), optical frequency comb generation, and quantum information systems. To this end, the nonlinear properties and dynamics of QD lasers on silicon are investigated in depth by both theoretical analysis and experiment. This book aims at addressing four issues encountered in developing silicon PIC: 1) The instability of laser emission caused by the chip-scale back-reflection. During photonic integration, the chip-scale back-reflection is usually responsible for the generation of severe instability (i.e., coherence collapse) from the on-chip source. As a consequence, the transmission performance of the chip could be largely degraded. To overcome this issue, we investigate the nonlinear properties and dynamics of QD laser on Si in this book to understand how can it be applied to isolator-free photonic integration in which the expensive optical isolator can be avoided. Results show that the QD laser exhibits a high degree of tolerance for chip-scale back-reflections in absence of any instability, which is a promising solution for isolator-free applications. 2) The degradation of laser performance at a high operating temperature. In this era of Internet-of-Thing (IoT), about 40% of energy is consumed for cooling in the data center. In this context, it is important to develop a high-temperature continuous-wave (CW) emitted laser source. In this book, we introduce a single-mode distributed feedback (DFB) QD laser with a design of optical wavelength detuning (OWD). By taking advantage of the OWD technique and the high-performance QD with high thermal stability, all the static and dynamical performances of the QD device are improved when the operating temperature is high. This study paves the way for developing uncooled and isolator-free PIC. 3) The limited phase noise level and optical bandwidth of the laser are the bottlenecks for further increasing the transmission capacity. To improve the transmission capacity and meet the requirement of the next generation of high-speed optical communication, we introduce the QD-based optical frequency comb (OFC) laser in this book. Benefiting from the gain broadening effect and the low-noise properties of QD, the OFC laser is realized with high optical bandwidth and low phase noise. We also provide approaches to further improve the laser performance, including the external optical feedback and the optical injection. 4) Platform with rich optical nonlinearities is highly desired by future integrated quantum technologies. In this book, we investigate the nonlinear properties and four-wave mixing (FWM) of QD laser on Si. This study reveals that the FWM efficiency of QD laser is more than ten times higher than that of quantum-well laser, which gives insight into developing a QD-based silicon platform for quantum states of light generation. Based on the results in this book, scientists, researchers, and engineers can come up with an informed judgment in utilizing the QD laser for applications ranging from classical silicon PIC to integrated quantum technologies.

Quantum Dot Heterostructures

Quantum Dot Heterostructures PDF

Author: Dieter Bimberg

Publisher: John Wiley & Sons

Published: 1999-03-17

Total Pages: 350

ISBN-13: 9780471973881

DOWNLOAD EBOOK →

Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)