Quantum Control of Molecular Processes

Quantum Control of Molecular Processes PDF

Author: Moshe Shapiro

Publisher: John Wiley & Sons

Published: 2012-09-19

Total Pages: 562

ISBN-13: 3527639721

DOWNLOAD EBOOK →

Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry. This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described. Indispensable for atomic, molecular and chemical physicists, physical chemists, materials scientists and nanotechnologists.

Principles of the Quantum Control of Molecular Processes

Principles of the Quantum Control of Molecular Processes PDF

Author: Moshe Shapiro

Publisher:

Published: 2003

Total Pages: 354

ISBN-13: 9780471241843

DOWNLOAD EBOOK →

Principles and Applications of Quantum Contro Over the past fifteen years, significant developments have been made in utilizing quantum attributes of light and matter to assume unprecedented control over the dynamics of atomic and molecular systems. This growth reflects a confluence of factors including the maturation of quantum mechanics as a tool for chemistry and physics, the development of new laser devices increasing our ability to manipulate light, and the recognition that coherent laser light can be used to imprint information on atoms and molecules for practical purposes. Written by two of the world’s leading researchers in the field, Principles of the Quantum Control of Molecular Processes offers a systematic introduction to the fundamental principles of coherent control, and to the physics and chemistry necessary to master it Designed as both a resource for self-study and as a graduate textbook, this survey of the subject provides a step-by-step discussion of light-matter interactions along with coverage of such essential topics as: Molecular dynamics and control LI>The dynamics of photodissociation LI>Bimolecular collision processes LI>The control of chirality and asymmetric synthesis LI>Application of control using moderate and strong fields LI>Tuning the system and laser parameters to achieve optimal control LI>Decoherence and methods for countering it P>Both authoritative and comprehensive, this first in-depth treatment of coherent control is destined to become the standard reference in an increasingly influential field PAUL W. BRUMER, PhD, is University Professor–Theoretical Chemical Physics and holds the Roel Buck Chair in Chemical Physics at the University of Toronto. He received his BSc. from Brooklyn College and his PhD from Harvard University. MOSHE SHAPIRO, PhD, is the Jacques Mimran Professor of Chemical Physics at the Weizmann Institute of Science, Rehovot, Israel, and a Professor of Chemistry and Physics at the University of British Columbia. He received his BSc, MSc, and PhD from the Hebrew University of Jerusalem The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.

Molecular Quantum Dynamics

Molecular Quantum Dynamics PDF

Author: Fabien Gatti

Publisher: Springer Science & Business Media

Published: 2014-04-09

Total Pages: 281

ISBN-13: 3642452906

DOWNLOAD EBOOK →

This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Laser Control and Manipulation of Molecules

Laser Control and Manipulation of Molecules PDF

Author: André D. Bandrauk

Publisher:

Published: 2002

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK →

This book details advances in the studies of chemical dynamics and photochemistry using emerging laser technologies. It examines both theoretical and experimental advances in this field and includes such topics as efficient selectivity in chemical reactions, new pulse shaping techniques, and new tool for realistic control and manipulation of molecules.

Advances in Multi-photon Processes and Spectroscopy

Advances in Multi-photon Processes and Spectroscopy PDF

Author: Y. Fujimura

Publisher: World Scientific

Published: 2001

Total Pages: 356

ISBN-13: 9789812791948

DOWNLOAD EBOOK →

In view of the rapid growth in both experimental and theoretical studies of multi-photon processes and multi-photon spectroscopy of atoms, ions and molecules in chemistry, physics, biology, materials science, etc., it is desirable to publish an advanced series of volumes containing review papers that can be read not only by active researchers in these areas, but also by those who are not experts but who intend to enter the field. The present series aims to serve this purpose. Each review article is written in a self-contained manner by the expert(s) in the area, so that the reader can grasp the knowledge without too much preparation.

Manipulating Quantum Systems

Manipulating Quantum Systems PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-09-14

Total Pages: 315

ISBN-13: 0309499542

DOWNLOAD EBOOK →

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics PDF

Author: Roberto Marquardt

Publisher: Elsevier

Published: 2020-09-18

Total Pages: 376

ISBN-13: 0128172355

DOWNLOAD EBOOK →

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion Presents the most recent developments in the detection and interpretation of ultra-fast phenomena Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure

Optical Control of Molecular Dynamics

Optical Control of Molecular Dynamics PDF

Author: Stuart A. Rice

Publisher: Wiley-Interscience

Published: 2000-03-13

Total Pages: 0

ISBN-13: 9780471354239

DOWNLOAD EBOOK →

Advances in laser technology over the last 10-15 years have stimulated study of the active control of quantum molecular dynamics. Lasers may used to generate external fields of varying intensity, phases, and spectral content, which then are used to alter the molecular dynamics of a system so as to generate more of a particular product. Control of reactions at this microscopic level is one of the hot areas of research in chemical physics. This book describes the current status of the theory of optical control of molecular dynamics

Controlling the Quantum World

Controlling the Quantum World PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2007-05-21

Total Pages: 244

ISBN-13: 0309164583

DOWNLOAD EBOOK →

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Molecular Beams in Physics and Chemistry

Molecular Beams in Physics and Chemistry PDF

Author: Bretislav Friedrich

Publisher: Springer Nature

Published: 2021-06-19

Total Pages: 639

ISBN-13: 3030639630

DOWNLOAD EBOOK →

This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.