Pushing The Frontiers Of Atomic Physics - Proceedings Of The Xxi International Conference On Atomic Physics

Pushing The Frontiers Of Atomic Physics - Proceedings Of The Xxi International Conference On Atomic Physics PDF

Author: Winthrop W Smith

Publisher: World Scientific

Published: 2009-03-12

Total Pages: 372

ISBN-13: 9814468053

DOWNLOAD EBOOK →

This unique book highlights the state of the art of the booming field of atomic physics in the early 21st century. It contains the majority of the invited papers from an ongoing series of conferences, held every two years, devoted to forefront research and fundamental studies in basic atomic physics, broadly defined. This conference, held at the University of Connecticut in July 2008, is part of a series of conferences, which began in 1968 and had its historical origins in the molecular beam conferences of the I. I. Rabi group. It provides an archival and up-to-date summary of current research on atoms and simple molecules as well as their interactions with each other and with external fields, including degenerate Bose and Fermi quantum gases and interactions involving ultrafast lasers, strong field control of X-ray processes, and nanoscale and mesoscopic quantum systems. The work of three recent Nobel Laureates in atomic physics is included, beginning with a lecture by Eric Cornell on “When Is a Quantum Gas a Quantum Liquid?”. There are also papers by Laureates Steven Chu and Roy Glauber. The volume also contains the IUPAP Young Scientist Prize lecture by Cheng Chin on “Exploring Universality of Few-Body Physics Based on Ultracold Atoms Near Feshbach Resonances”.

Pushing the Frontiers of Atomic Physics

Pushing the Frontiers of Atomic Physics PDF

Author: Robin Coté

Publisher: World Scientific

Published: 2009

Total Pages: 372

ISBN-13: 9814273007

DOWNLOAD EBOOK →

In memoriam. Herbert Walther, scientist extraordinaire / P. Meystre. Willis E. Lamb / P. Berman -- Nobel Laureate session. When is a quantum gas a quantum liquid? / E.A. Cornell. Cooperative emission of light quanta : a theory of coherent radiation damping / R.J. Glauber. Coherent control of ultracold matter : fractional quantum Hall physics and large-area atom interferometry / S. Chu -- Precision measurements. More accurate measurement of the electron magnetic moment and the fine structure constant / G. Gabrielse. Determination of the fine structure constant with atom interferometry and Bloch oscillations / F. Biraben. Precise measurements of s-wave scattering phase shifts with a juggling atomic clock / K. Gibble. Quantum control of spins and photons at nanoscales / M.D. Lukin -- Quantum information and quantum optics. Atomic ensemble quantum memories / A. Kuzmich. Quantum non-demolition photon counting and time-resolved reconstruction of non-classical field states in a cavity / S. Haroche. Spin squeezing on an atomic-clock transition / V. Vuletić. Quantum micro-mechanics with ultracold atoms / D. Stamper-Kurn. Improved "position squared" readout using degenerate cavity modes / J.G.E. Harris -- Quantum degenerate systems. Tunable interactions in a Bose-Einstein condensate of Lithium : photoassociation and disorder-induced localization / R.G. Hulet. A purely dipolar quantum gas / T. Pfau. Bose-Einstein condensation of exciton-polaritons / Y. Yamamoto. Anderson localization of matter waves / P. Bouyer. Anderson localization of a non-interacting Bose-Einstein condensate / M. Inguscio. Fermi gases with tunable interactions / J.E. Thomas. Photoemission spectroscopy for ultracold atoms / D.S. Jin. Universality in strongly interacting Fermi gases / P.D. Drummond. Mapping the phase diagram of a two-component Fermi gas with strong interactions / Y. Shin. Exploring universality of few-body physics based on ultracold atoms near Feshbach resonances / C. Chin -- Optical lattices and cold molecules. Atom interferometry with a weakly interacting Bose-Einstein condensate / G. Modugno. An optical plaquette : minimum expressions of topological matter / B. Paredes. Strongly correlated bosons and fermions in optical lattices / I. Bloch. Laser cooling of molecules / P. Pillet. A dissipative Tonks-Girardeau gas of molecules / S. Dürr. Spectroscopy of ultracold KRb molecules / W.C. Stwalley. Cold molecular ions : single molecule studies / M. Drewsen -- Ultrafast phenomena. The frontiers of attosecond physics / L.F. DiMauro. Strong-field control of X-ray processes / L. Young

Proceedings of the XXI International Conference on Atomic Physics

Proceedings of the XXI International Conference on Atomic Physics PDF

Author: Robin Coté

Publisher:

Published: 2009

Total Pages: 0

ISBN-13: 9789814271998

DOWNLOAD EBOOK →

This unique book highlights the state of the art of the booming field of atomic physics in the early 21st century. It contains the majority of the invited papers from an ongoing series of conferences, held every two years, devoted to forefront research and fundamental studies in basic atomic physics, broadly defined. This conference, held at the University of Connecticut in July 2008, is part of a series of conferences, which began in 1968 and had its historical origins in the molecular beam conferences of the I.I. Rabi group. It provides an archival and up-to-date summary of current research on atoms and simple molecules as well as their interactions with each other and with external fields, including degenerate Bose and Fermi quantum gases and interactions involving ultrafast lasers, strong field control of X-ray processes, and nanoscale and mesoscopic quantum systems. The work of three recent Nobel Laureates in atomic physics is included, beginning with a lecture by Eric Cornell on "When Is a Quantum Gas a Quantum Liquid?". There are also papers by Laureates Steven Chu and Roy Glauber. The volume also contains the IUPAP Young Scientist Prize lecture by Cheng Chin on "Exploring Universality of Few-Body Physics Based on Ultracold Atoms Near Feshbach Resonances

Expanding Frontier Of Atomic Physics, The - Proceedings Of The Xviii International Conference On Atomic Physics

Expanding Frontier Of Atomic Physics, The - Proceedings Of The Xviii International Conference On Atomic Physics PDF

Author: Hossein R Sadeghpour

Publisher: World Scientific

Published: 2003-04-29

Total Pages: 377

ISBN-13: 9814487031

DOWNLOAD EBOOK →

This important proceedings volume highlights the major scientific achievement of the last decade in atomic physics, namely the creation of the gaseous Bose-Einstein condensate, which was featured prominently at the XVIII International Conference on Atomic Physics (ICAP2002). Two recipients of the 2001 Nobel Prize delivered lectures at the meeting. Among the topics discussed were novel processes leading to degenerate Fermi gases in atom traps, creation of cold molecules, condensates in optical lattices, atoms in intense fields, tests of fundamental symmetries, quantum control and information, time and frequency standards.

Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices PDF

Author: Maciej Lewenstein

Publisher: Oxford University Press

Published: 2012-03-08

Total Pages: 494

ISBN-13: 0199573123

DOWNLOAD EBOOK →

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.

Quantum Precision Measurement and Cold Atom Physics

Quantum Precision Measurement and Cold Atom Physics PDF

Author: Jingbiao Chen

Publisher: Frontiers Media SA

Published: 2022-09-23

Total Pages: 161

ISBN-13: 2832502296

DOWNLOAD EBOOK →

Ever since the invention of the cesium atomic clock in 1955, quantum frequency standards have seen considerable development over the decades, as a representative of quantum precision measurement. The progress in frequency measurements achieved in the past allowed one to perform quantum precision measurements of other physical and technical quantities with unprecedented precision, whenever they could be traced back to a frequency measurement. Using atomic transitions as frequency reference, quantum frequency standards are far less susceptible to external perturbations, and the identity of microscopic particles allows easy replication of a quantum standard with the same frequency. With laser cooling and trapping, cold atomic ensembles eliminate Doppler shift broadening, and have become the go-to quantum reference when precision and new physics are pursued. The advancement of laser cooling and cold atom physics, in addition to novel physical matter states such as Bose-Einstein Condensation, give rise to new experimental techniques in quantum precision measurement, especially quantum frequency standards, such as cesium fountain clocks dictating the SI second, as well as optical lattice clocks and single-ion optical clocks pushing the frontier of quantum metrology. Other areas of quantum metrology, such as gravitometers and magnetometers, also benefit greatly from cold atoms. For practical applications, quantum frequency standards are usually required to be compact and portable, and thermal atoms in the form of atomic beams or vapor cells are utilized. Commercially available quantum frequency standards such as cesium beam clocks or rubidium clocks have become the cornerstone of navigation and timekeeping. Compact optical clocks based on various laser spectroscopic techniques have also been developed. As researchers strive to break through the limits of accurate quantum measurement and atomic temperature, new fields such as precise measurement, quantum computing and quantum simulation based on cold atoms are further opened up, and challenges still exist to explore new physical phenomena in the field of cold atoms. In honor of Prof. Yiqiu Wang on the occasion of his 90th birthday, the main goal of this Research Topic is to provide a platform to exhibit the recent achievements and reveal the future challenges in quantum precision measurement, as well as studies of cold atom physics with quantum metrology, closely related to the long-term scientific research areas of Prof. Yiqiu Wang. Both Original Research and Review articles are encouraged. Topics of interest to this collection include, but are not limited to: • Quantum precision measurements • Microwave atomic clocks and their applications • Optical frequency standards, laser spectroscopy, and their applications • Quantum measurement based on cold atom • Quantum computation and quantum simulation based on cold atom

Atoms, Molecules, and Light

Atoms, Molecules, and Light PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2002-11-01

Total Pages: 52

ISBN-13: 0309086132

DOWNLOAD EBOOK →

With the publication in 1994 of Atomic, Molecular, and Optical Science: An Investment in the Future (the FAMOS report), the National Research Council launched the series Physics in a New Era, its latest survey of physics. Each of the six area volumes in the survey focuses on a different subfield of physics, describing advances since the last decadal survey and suggesting future opportunities and directions. This survey culminated in 2001 with the publication of the seventh and final volume, Physics in a New Era: An Overview. Since the publication of the FAMOS report, the developments in atomic, molecular, and optical (AMO) science have been amazing. Significant advances in areas such as cooling and trapping, atom and quantum optics, single-atom and single-molecule detection, and ultrafast and ultra intense phenomena, along with the emergence of new applications, made it clear that an update of the FAMOS report was needed. With support from the National Science Foundation and the Department of Energy, the Committee for an Updated Assessment of Atomic, Molecular, and Optical Science was formed. The committee's statement of task reads as follows: The committee will prepare a narrative document that portrays the advances in AMO science and its impact on society. This report highlights selected forefront areas of AMO science, emphasizing recent accomplishments and new opportunities, identifies connections between AMO science and other scientific fields, emerging technologies, and national needs, describes career opportunities for AMO scientists. To accomplish its task and at the same time reach a broad audience, the committee decided to present its report in the form of a brochure highlighting selected advances, connections, and impacts on national needs. An exhaustive assessment of the field, which will fall within the purview of the next decadal survey, was not the goal of the update. The committee would like to express its gratitude for the informative interactions it had with many scientists and policy makers. Many colleagues completed a questionnaire and suggested topics to be included in this report. The final selection of topics was made in accordance with the criteria set forth in the statement of task. While this report was still being written, the tragic events of September 11, 2001, occurred. AMO science and its applications have already played and will continue to play a central role in our nation's response to terrorist threats from conventional as well as chemical or biological weapons. Some of the technology discussed in this report in the chapter "AMO Science Enhancing National Defense" was used successfully for the U.S. military response in Afghanistan-the Global Positioning System (GPS) and laser-guided munitions are just two examples. AMO science will also enable the development of early detection techniques that will help to neutralize the threat from biological and chemical agents.

The Hispalensis Lectures on Nuclear Physics

The Hispalensis Lectures on Nuclear Physics PDF

Author: Jose Miguel Arias

Publisher: Springer Science & Business Media

Published: 2004-11-23

Total Pages: 356

ISBN-13: 9783540225126

DOWNLOAD EBOOK →

Powerful new techniques, including heavy ion and exotic beams, are pushing the frontiers of nuclear physics and opening up a wealth of new fields of research. After introductory chapters on theoretical and experimental aspects of nuclear collisions and beams, ``Exotic Nuclear Physics'' offers articles by experienced lecturers on forefront topics in nuclear physics, such as the conquest of the neutron and the proton drip-lines, nuclear astrophysics, the equation of state of hypernuclear matter, nuclear supersymmetry and chaotic motion in nuclei. This volume continues the successful tradition of published lecture notes from the Hispalensis International Summer School. It will benefit graduate students and lecturers in search of advanced material for self-study and courses as will as researchers in search of a modern and comprehensive source of reference.