Polymer Engineering Science and Viscoelasticity

Polymer Engineering Science and Viscoelasticity PDF

Author: Hal F. Brinson

Publisher: Springer

Published: 2015-01-24

Total Pages: 488

ISBN-13: 1489974857

DOWNLOAD EBOOK →

This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers

Principles of Polymer Processing

Principles of Polymer Processing PDF

Author: Zehev Tadmor

Publisher: John Wiley & Sons

Published: 2013-12-02

Total Pages: 1004

ISBN-13: 0470355921

DOWNLOAD EBOOK →

Thoroughly revised edition of the classic text on polymer processing The Second Edition brings the classic text on polymer processing thoroughly up to date with the latest fundamental developments in polymer processing, while retaining the critically acclaimed approach of the First Edition. Readers are provided with the complete panorama of polymer processing, starting with fundamental concepts through the latest current industry practices and future directions. All the chapters have been revised and updated, and four new chapters have been added to introduce the latest developments. Readers familiar with the First Edition will discover a host of new material, including: * Blend and alloy microstructuring * Twin screw-based melting and chaotic mixing mechanisms * Reactive processing * Devolatilization--theory, mechanisms, and industrial practice * Compounding--theory and industrial practice * The increasingly important role of computational fluid mechanics * A systematic approach to machine configuration design The Second Edition expands on the unique approach that distinguishes it from comparative texts. Rather than focus on specific processing methods, the authors assert that polymers have a similar experience in any processing machine and that these experiences can be described by a set of elementary processing steps that prepare the polymer for any of the shaping methods. On the other hand, the authors do emphasize the unique features of particular polymer processing methods and machines, including the particular elementary step and shaping mechanisms and geometrical solutions. Replete with problem sets and a solutions manual for instructors, this textbook is recommended for undergraduate and graduate students in chemical engineering and polymer and materials engineering and science. It will also prove invaluable for industry professionals as a fundamental polymer processing analysis and synthesis reference.

Applied Mechanics of Polymers

Applied Mechanics of Polymers PDF

Author: George Youssef

Publisher: Elsevier

Published: 2021-12-02

Total Pages: 320

ISBN-13: 0128210796

DOWNLOAD EBOOK →

Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications

Polymer Engineering Principles

Polymer Engineering Principles PDF

Author: Richard C. Progelhof

Publisher:

Published: 1993

Total Pages: 918

ISBN-13: 9783446156869

DOWNLOAD EBOOK →

This text introduces the design engineer to the basic elements and properties of polymers. These characteristics are related to solid and fluid behavior, processing, and performance of polymers.

Material Science of Polymers for Engineers

Material Science of Polymers for Engineers PDF

Author: Tim A. Osswald

Publisher: Hanser Publications

Published: 2012

Total Pages: 595

ISBN-13: 9781569905142

DOWNLOAD EBOOK →

This unified approach to polymer materials science is divided in three major sections: Basic Principles - covering historical background, basic material properties, molecular structure, and thermal properties of polymers. Influence of Processing on Properties - tying processing and design by discussing rheology of polymer melts, mixing and processing, the development of anisotropy, and solidification processes. Engineering Design Properties - covering the different properties that need to be considered when designing a polymer component - from mechanical properties to failure mechanisms, electrical properties, acoustic properties, and permeability of polymers. A new chapter introducing polymers from a historical perspective not only makes the topic less dry, but also sheds light on the role polymers played, for better and worse, in shaping today's industrial world. The first edition was praised for the vast number of graphs and data that can be used as a reference. A new table in the appendix containing material property graphs for several polymers further strengthens this attribute. The most important change made to this edition is the introduction of real-world examples and a variety of problems at the end of each chapter.

Condensed Encyclopedia of Polymer Engineering Terms

Condensed Encyclopedia of Polymer Engineering Terms PDF

Author: Nicholas P Cheremisinoff

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 377

ISBN-13: 0080502822

DOWNLOAD EBOOK →

This reference book provides a comprehensive overview of the nature, manufacture, structure, properties, processing, and applications of commercially available polymers. The main feature of the book is the range of topics from both theory and practice, which means that physical properties and applications of the materials concerned are described in terms of the theory, chemistry and manufacturing constraints which apply to them. It will therefore enable scientists to understand the commercial implications of their work as well as providing polymer technologists, engineers and designers with a theoretical background. Provides a comprehensive overview of commercially available polymers Offers a unique mix of theory and application Essential for both scientists and technologists

Polymer Processing

Polymer Processing PDF

Author: Donald G. Baird

Publisher: John Wiley & Sons

Published: 2014-03-24

Total Pages: 422

ISBN-13: 0470930586

DOWNLOAD EBOOK →

Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.