Advances in Proof-Theoretic Semantics

Advances in Proof-Theoretic Semantics PDF

Author: Thomas Piecha

Publisher: Springer

Published: 2015-10-24

Total Pages: 283

ISBN-13: 331922686X

DOWNLOAD EBOOK →

This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.

Proof-theoretic Semantics

Proof-theoretic Semantics PDF

Author: Nissim Francez

Publisher:

Published: 2015-10-29

Total Pages: 438

ISBN-13: 9781848901834

DOWNLOAD EBOOK →

This book is a monograph on the topic of Proof-Theoretic Semantics, a theory of meaning constituting an alternative to the more traditional Model-Theoretic Semantics. The latter regards meaning as truth-conditions (in arbitrary models), the former regards meaning as canonical derivability conditions in a meaning-conferring natural-deduction proof-system. In the first part of the book, the Proof-Theoretic Semantics for logic is presented. It surveys the way a natural-deduction system can serve as meaning-conferring, and in particular analyses various criteria such a system has to meet in order to qualify as meaning-conferring. A central criterion is harmony, a balance between introduction-rules and elimination-rules. The theory is applied to various logics, e.g., relevance logic, and various proof systems such as multi-conclusion natural-deduction and bilateralism. The presentation is inspired by recent work by the author, and also surveys recent developments. In part two, the theory is applied to fragments of natural language, both extensional and intensional, a development based on the author's recent work. For example, conservativity of determiners, once set up in a proof-theoretic framework, becomes a provable property of all (regular) determiners. It is shown that meaning need not carry the heavy ontological load characteristic of Model-Theoretic Semantics of complex natural language constructs. Nissim Francez is an emeritus professor of computer science at the Technion, Israel Institute of Technology. At a certain point in his career he moved from research related to concurrent and distributed programming and program verification to research in computational linguistics, mainly formal semantics of natural language. In recent years, he has worked on Proof-Theoretic Semantics, in particular for natural language.

The Semantics and Proof Theory of the Logic of Bunched Implications

The Semantics and Proof Theory of the Logic of Bunched Implications PDF

Author: David J. Pym

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 323

ISBN-13: 9401700915

DOWNLOAD EBOOK →

This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: • Resources as a basis for semantics; • Proof-search as a basis for reasoning; and • The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.

Proof and Falsity

Proof and Falsity PDF

Author: Nils Kürbis

Publisher: Cambridge University Press

Published: 2019-05-09

Total Pages: 317

ISBN-13: 1108481302

DOWNLOAD EBOOK →

Provides an original analysis of negation - a central concept of logic - and how to define its meaning in proof-theoretic semantics.

What Logics Mean

What Logics Mean PDF

Author: James W. Garson

Publisher: Cambridge University Press

Published: 2013-11-14

Total Pages: 303

ISBN-13: 110703910X

DOWNLOAD EBOOK →

This book explains how the meanings of the symbols of logic are determined by the rules that govern them.

Dag Prawitz on Proofs and Meaning

Dag Prawitz on Proofs and Meaning PDF

Author: Heinrich Wansing

Publisher: Springer

Published: 2014-11-27

Total Pages: 469

ISBN-13: 3319110411

DOWNLOAD EBOOK →

This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an introductory paper that surveys Prawitz's numerous contributions to proof theory and proof-theoretic semantics and puts his work into a somewhat broader perspective, both historically and systematically. Chapters include either in-depth studies of certain aspects of Dag Prawitz's work or address open research problems that are concerned with core issues in structural proof theory and range from philosophical essays to papers of a mathematical nature. Investigations into the necessity of thought and the theory of grounds and computational justifications as well as an examination of Prawitz's conception of the validity of inferences in the light of three “dogmas of proof-theoretic semantics” are included. More formal papers deal with the constructive behaviour of fragments of classical logic and fragments of the modal logic S4 among other topics. In addition, there are chapters about inversion principles, normalization of p roofs, and the notion of proof-theoretic harmony and other areas of a more mathematical persuasion. Dag Prawitz also writes a chapter in which he explains his current views on the epistemic dimension of proofs and addresses the question why some inferences succeed in conferring evidence on their conclusions when applied to premises for which one already possesses evidence.

Proof Theory and Algebra in Logic

Proof Theory and Algebra in Logic PDF

Author: Hiroakira Ono

Publisher: Springer

Published: 2019-08-02

Total Pages: 160

ISBN-13: 9811379971

DOWNLOAD EBOOK →

This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.

Natural Deduction

Natural Deduction PDF

Author: Dag Prawitz

Publisher: Courier Dover Publications

Published: 2006-02-24

Total Pages: 132

ISBN-13: 0486446557

DOWNLOAD EBOOK →

An innovative approach to the semantics of logic, proof-theoretic semantics seeks the meaning of propositions and logical connectives within a system of inference. Gerhard Gentzen invented proof-theoretic semantics in the early 1930s, and Dag Prawitz, the author of this study, extended its analytic proofs to systems of natural deduction. Prawitz's theories form the basis of intuitionistic type theory, and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics. The concept of natural deduction follows a truly natural progression, establishing the relationship between a noteworthy systematization and the interpretation of logical signs. As this survey explains, the deduction's principles allow it to proceed in a direct fashion — a manner that permits every natural deduction's transformation into the equivalent of normal form theorem. A basic result in proof theory, the normal form theorem was established by Gentzen for the calculi of sequents. The proof of this result for systems of natural deduction is in many ways simpler and more illuminating than alternative methods. This study offers clear illustrations of the proof and numerous examples of its advantages.

Handbook of Proof Theory

Handbook of Proof Theory PDF

Author: S.R. Buss

Publisher: Elsevier

Published: 1998-07-09

Total Pages: 823

ISBN-13: 0080533183

DOWNLOAD EBOOK →

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

Reductive Logic and Proof-search

Reductive Logic and Proof-search PDF

Author: David J. Pym

Publisher: Clarendon Press

Published: 2004-04-29

Total Pages: 228

ISBN-13: 0198526334

DOWNLOAD EBOOK →

This book is a specialized monograph on the development of the mathematical and computational metatheory of reductive logic and proof-search, including proof-theoretic, semantic/model-theoretic and algorithmic aspects. The scope ranges from the conceptual background to reductive logic, through its mathematical metatheory, to its modern applications in the computational sciences.