Production of Biofuels and Chemicals with Ultrasound

Production of Biofuels and Chemicals with Ultrasound PDF

Author: Zhen Fang

Publisher: Springer

Published: 2014-11-26

Total Pages: 363

ISBN-13: 9401796246

DOWNLOAD EBOOK →

Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with ultrasound and microwave irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Ultrasound” and “Production of Biofuels and Chemicals with Microwave” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Ultrasound” provides current research advances and prospects in mechanistic principles of acoustic cavitation in sonochemistry, physical and chemical mechanisms in biofuel synthesis, reactor design for transesterification and esterification reactions, lipid extraction from algal biomass, microalgae extraction, biodiesel and bioethanol synthesis, practical technologies and systems, pretreatment of biomass waste sources including lignocellulosic materials, manures and sludges for biogas production, vibration-assisted pelleting, combined chemical-mechanical methods, valorization of starch-based wastes and techno-economic methodology. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Ultrasound” and “Microwave” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.

Production of Biofuels and Chemicals with Microwave

Production of Biofuels and Chemicals with Microwave PDF

Author: Zhen Fang

Publisher: Springer

Published: 2014-11-26

Total Pages: 280

ISBN-13: 9401796122

DOWNLOAD EBOOK →

Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.

Microwave-Mediated Biofuel Production

Microwave-Mediated Biofuel Production PDF

Author: Veera G. Gude

Publisher: CRC Press

Published: 2017-08-22

Total Pages: 399

ISBN-13: 1498745164

DOWNLOAD EBOOK →

This book focuses on chemical syntheses and processes for biofuel production mediated by microwave energy. This is the first contribution in this area serving as a resource and guidance manual for understanding the principles, mechanisms, design, and applications of microwaves in biofuel process chemistry. Green chemistry of microwave-mediated biofuel reactions and thermodynamic potentials for the process biochemistry are the focus of this book. Microwave generation, wave propagation, process design, development and configurations, and biofuel applications are discussed in detail.

Production of Biofuels and Chemicals with Bifunctional Catalysts

Production of Biofuels and Chemicals with Bifunctional Catalysts PDF

Author: Zhen Fang

Publisher: Springer

Published: 2017-12-27

Total Pages: 396

ISBN-13: 9811051372

DOWNLOAD EBOOK →

This book provides state-of-the-art reviews, current research, prospects and challenges of the production of biofuels and chemicals such as furanic biofuels, biodiesel, carboxylic acids, polyols and others from lignocellulosic biomass, furfurals, syngas and γ-valerolactone with bifunctional catalysts, including catalytic, and combined biological and chemical catalysis processes. The bifunctionality of catalytic materials is a concept of not only using multifunctional solid materials as activators, but also design of materials in such a way that the catalytic materials have synergistic characteristics that promote a cascade of transformations with performance beyond that of mixed mono-functional catalysts. This book is a reference designed for researchers, academicians and industrialists in the area of catalysis, energy, chemical engineering and biomass conversion. Readers will find the wealth of information contained in chapters both useful and essential, for assessing the production and application of various biofuels and chemicals by chemical catalysis and biological techniques.

Liquid Biofuels

Liquid Biofuels PDF

Author: Krushna Prasad Shadangi

Publisher: John Wiley & Sons

Published: 2021-06-29

Total Pages: 754

ISBN-13: 1119791987

DOWNLOAD EBOOK →

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.

Green Chemistry for Sustainable Biofuel Production

Green Chemistry for Sustainable Biofuel Production PDF

Author: Veera Gnaneswar Gude

Publisher: CRC Press

Published: 2018-05-24

Total Pages: 554

ISBN-13: 1351582844

DOWNLOAD EBOOK →

Renewable fuel research and process development requires interdisciplinary approaches involving chemists and physicists from both scientific and engineering backgrounds. Here is an important volume that emphasizes green chemistry and green engineering principles for sustainable process development from an interdisciplinary point of view. It creates an enriching knowledge base on green chemistry of biofuel production, sustainable process development, and green engineering principles for renewable fuel production. This book includes chapters contributed by both research scientists and research engineers with significant experience in biofuel chemistry and processes. The book offers an abundance of scientific experimental methods and analytical procedures and interpretation of the results that capture the state-of-the-art knowledge in this field. The wide range of topics make this book a valuable resource for academicians, researchers, industrial practitioners and scientists, and engineers in various renewable energy fields. Key features: • Emphasizes green chemistry and green engineering principles for sustainable process development for biofuel production • Discusses a wide array of biofuels from algal biomass to waste-to-energy technologies and wastewater treatment and activated sludge processes • Presents advances and developments in biofuel green chemistry and green engineering, including process intensification (microwaves/ultrasound), ionic liquids, and green catalysis • Looks at environmental assessment and economic impact of biofuel production

Bioreactors

Bioreactors PDF

Author: Lakhveer Singh

Publisher: Elsevier

Published: 2020-04-22

Total Pages: 336

ISBN-13: 0128212640

DOWNLOAD EBOOK →

Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions presents and compares the foundational concepts, state-of-the-art design and fabrication of bioreactors. Solidly based on theoretical fundamentals, the book examines various aspects of the commercially available bioreactors, such as construction and fabrication, design, modeling and simulation, development, operation, maintenance, management and target applications for biofuels production and bio-waste management. Emerging issues in commercial feasibility are explored, constraints and pathways for upscaling, and techno-economic assessment are also covered. This book provides researchers and engineers in the biofuels and waste management sectors a clear, at-a-glance understanding of the actual potential of different advanced bioreactors for their requirements. It is a must-have reference for better-informed decisions when selecting the appropriate technology models for sustainable systems development and commercialization. Focuses on sustainable bioreactor processes and applications in bioenergy and bio-waste management Explores techno-economic and sustainability assessment aspects through a comparative approach, catering to diverse arrays and applications Offers comprehensive coverage of the most recent technology, from fundamentals to applications

Multi-energy Optimized Processing

Multi-energy Optimized Processing PDF

Author: Matthew Mason Kropf

Publisher:

Published: 2008

Total Pages: 182

ISBN-13:

DOWNLOAD EBOOK →

This work aimed to improve the understanding of the use of microwaves and ultrasound for chemical processes. Using biodiesel production as the case for study, the non-linear effects of high intensity ultrasonics, electromagnetic loss, and microwave heating were explored. Cavitation and atomization phenomena were used to describe the process of ultrasonic emulsification. The dielectric loss mechanisms pertinent to the biodiesel production materials were described as the connection to between the effects of ultrasonic emulsification and microwave heating. Superheating and anisothermal heating phenomena were identified as the specific advantages afforded by microwave heating. High intensity ultrasonics was found to be capable of creating emulsions of biodiesel reactants with uniform dispersed phase droplets. Through optical microscopy, the ability to control the dispersed phase droplet size by altering the frequency and intensity of ultrasound was confirmed. This ultrasonic technique was investigated by measuring complex permittivity of the emulsions from 500 MHz and 5 GHz. The dielectric loss of emulsions consisting of methanol and soybean oil indicated that ultrasonic treatments could be used to alter the microwave absorption. Microwave heating tests of ultrasonically formed emulsions confirmed the permittivity results practically. The superheated boiling point of methanol and heating rate of methanol was extended to higher temperatures and rates in ultrasonically formed emulsions. Microwave heating of ultrasonically mixed emulsions was shown to result in faster transesterification relations than microwave heating of conventionally mixed emulsions. Finally, utilizing ultrasonics to optimize microwave absorption was shown capable of transesterification without catalyst.

Ultrasound Methods for Biodiesel Production and Analysis

Ultrasound Methods for Biodiesel Production and Analysis PDF

Author: Pâmella A. Oliveira

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Ultrasonic techniques have been widely used in biodiesel production, since the acoustic cavitation is a phenomenon capable of accelerating potentially the transesterification reactions. The equipment employed in such approach was simply equipment available in any regular laboratory of chemistry. Further developments introduced the ultrasound as an important tool to produce biodiesel. The main advantage is increasing the conversion of esters at reduced reaction times, with significantly lower production costs. As a method for characterization and analysis of materials, ultrasound has been used since several decades ago. However, ultrasonic analytical methods based on metrological principles are fairly recent investigated. Using ultrasound as physical principle to interrogate biodiesel is a promising field of research, with some remarkable outcomes produced so far. The aim of this chapter is to demonstrate advances of using ultrasonic techniques in production and characterization of biodiesel, as well as an appraisal of the current technology status, and provide insights into future developments.

Sustainable Production of Biofuels Using Intensified Processes

Sustainable Production of Biofuels Using Intensified Processes PDF

Author: Juan Gabriel Segovia-Hernández

Publisher: Springer Nature

Published: 2022-09-28

Total Pages: 216

ISBN-13: 3031132165

DOWNLOAD EBOOK →

This book describes for first time the synthesis and intensified process design in the production of top biofuels. The production of biofuels is not new. In 2019, global biofuel production levels reached 1,841 thousand barrels of oil equivalent per day, in stark comparison to the 187 thousand barrels of oil equivalent per day that was produced in 2000. Growth has largely been driven by policies that encourage the use and production of biofuels due to the perception that it could provide energy security and reduce greenhouse gas emissions in relevant sectors. From a technical point of view, almost all fuels from fossil resources could be substituted by their bio-based counterparts. However, the cost of bio-based production in many cases exceeds the cost of petrochemical production. Also, biofuels must be proven to perform at least as good as the petrochemical equivalent they are substituting and to have a lower environmental impact. The low price of crude oil acted as a barrier to biofuels production and producers focussed on the specific attributes of biofuels such as their complex structure to justify production costs. Also, the consumer demand for environmentally friendly products, population growth and limited supplies of non-renewable resources has now opened new windows of opportunity for biofuels. The industry is increasingly viewing chemical production from renewable resources as an attractive area for investment. This book uniquely introduces the application of new process intensification techniques that will allow the generation of clean, efficient and economical processes for biofuels in a competitive way in the market.