Printed Batteries

Printed Batteries PDF

Author: Senentxu Lanceros-Méndez

Publisher: John Wiley & Sons

Published: 2018-02-21

Total Pages: 264

ISBN-13: 1119287898

DOWNLOAD EBOOK →

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Printed Batteries

Printed Batteries PDF

Author: Senentxu Lanceros-Méndez

Publisher: John Wiley & Sons

Published: 2018-04-23

Total Pages: 270

ISBN-13: 1119287421

DOWNLOAD EBOOK →

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Advanced Materials for Printed Flexible Electronics

Advanced Materials for Printed Flexible Electronics PDF

Author: Colin Tong

Publisher: Springer Nature

Published: 2021-10-04

Total Pages: 641

ISBN-13: 3030798046

DOWNLOAD EBOOK →

This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.

Innovative Technologies for Printing and Packaging

Innovative Technologies for Printing and Packaging PDF

Author: Min Xu

Publisher: Springer Nature

Published: 2023-03-03

Total Pages: 663

ISBN-13: 9811990247

DOWNLOAD EBOOK →

This book includes original, peer-reviewed research papers from the 13th China Academic Conference on Printing and Packaging (CACPP 2022), held in Jinan, China, on November 10-12, 2022. The proceedings cover the recent findings in color science and technology, image processing technology, digital media technology, mechanical and electronic engineering and numerical control, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book is of interest to university researchers, R&D engineers, and graduate students in the field of graphic arts, packaging, color science, image science, material science, computer science, digital media, network technology, and smart manufacturing technology.

Development of an Air-stable, High Energy Density Printed Silver Oxide Battery for Printed Electronics

Development of an Air-stable, High Energy Density Printed Silver Oxide Battery for Printed Electronics PDF

Author: Kyle Braam

Publisher:

Published: 2014

Total Pages: 116

ISBN-13:

DOWNLOAD EBOOK →

Printed batteries are an emerging battery technology that has the potential to enable the production of cheap, small form factor, flexible batteries capable of powering a diverse set of existing and emerging applications such as RFID tags, flexible displays, and distributed sensors. Partially printed battery systems have been demonstrated with various chemistries, but what is needed is a low cost, air stable method of fully printing a high energy density battery. The silver oxide chemistry is attractive for developing a printed battery as this chemistry has demonstrated high energy densities and is capable of air stable fabrication processes due to its aqueous based chemistry. To facilitate the advancement of this technology, material components and printing techniques need to be developed to demonstrate a printed silver oxide battery. In this thesis, I will present a printed, high energy density silver oxide battery using stencil printing. A key development of this work is the demonstration of a novel photopolymerized polyacrylic acid separator layer. The mechanical and conductivity properties of this layer are characterized and optimized for an alkaline silver oxide battery. The incorporation of this layer has enabled a printed battery capable of high rates of discharge. The batteries show no difference in discharge upon flexing at a bend radius of 1.0 cm, indicating their potential in flexible applications. The fabricated batteries have demonstrated high energy densities of 10 mWhr cm −3 and areal capacities of 5.4 mAhr cm−2, which satisfies the power and capacity requirements for most of the proposed applications. In addition, we have examined several printed encapsulation schemes (epoxy and silicone caulk) for encapsulating an alkaline battery.

3D Printing

3D Printing PDF

Author: Ram K. Gupta

Publisher: CRC Press

Published: 2023-04-18

Total Pages: 507

ISBN-13: 1000850048

DOWNLOAD EBOOK →

3D Printing: Fundamentals to Emerging Applications discusses the fundamentals of 3D-printing technologies and their emerging applications in many important sectors such as energy, biomedicals, and sensors. Top international authors in their fields cover the fundamentals of 3D-printing technologies for batteries, supercapacitors, fuel cells, sensors, and biomedical and other emerging applications. They also address current challenges and possible solutions in 3D-printing technologies for advanced applications. Key features: Addresses the state-of-the-art progress and challenges in 3D-printing technologies Explores the use of various materials in 3D printing for advanced applications Covers fundamentals of the electrochemical behavior of various materials for energy applications Provides new direction and enables understanding of the chemistry, electrochemical properties, and technologies for 3D printing This is a must-have resource for students as well as researchers and industry professionals working in energy, biomedicine, materials, and nanotechnology.

Towards Completely Printed High-capacity Flexible Zinc-air Batteries

Towards Completely Printed High-capacity Flexible Zinc-air Batteries PDF

Author: Taichong Ma

Publisher:

Published: 2021

Total Pages: 70

ISBN-13:

DOWNLOAD EBOOK →

Flexible thin batteries are an essential component of emerging thin, flexible and wearable electronics. In this work a completely printed thin film zinc-air battery has been demonstrated for the first time via a layer-by-layer monolithic additive process without electrolyte filling after cell fabrication. This monolithic process was enabled by the high thermal stability and low vapor pressure of the sold ionic liquid electrolyte films. These printed thin film batteries exhibited high volumetric capacities of 200 AhL−1 as compared to commercially-available thin film lithium polymer batteries and represents, as far as the authors are aware, the highest areal capacity (2.0mAh cm−2) for any cells with thicknesses below 160 [micrometres].1 For batteries below 500 [micrometres] in total thickness, an aerial capacity of 2.4mAh cm−2 is higher than that of other flexible batteries.2,3 The ionic liquid gel-based electrolyte is stable throughout the fabrication process which includes, cumulatively, 90 minutes of heat treatment at 80 C°. Our new DES electrolyte and anode fabrication technique allow us to further reduce the overall thickness and make our battery electrolyte biodegradable. The screen printing and stencil printing tools employed for open-air processing in this study are widely available and scalable to high production throughputs. This additive printing approach could readily be translated to large scale, low cost, and low carbon footprint production of truly thin film batteries to power next generation, low toxicity, sustainable medical devices, wearable electronics and IoT devices.

Lithium-Ion Battery Chemistries

Lithium-Ion Battery Chemistries PDF

Author: John T. Warner

Publisher: Elsevier

Published: 2019-05-10

Total Pages: 356

ISBN-13: 0128147792

DOWNLOAD EBOOK →

Lithium-Ion Battery Chemistries: A Primer offers a simple description on how different lithium-ion battery chemistries work, along with their differences. It includes a refresher on the basics of electrochemistry and thermodynamics, and an understanding of the fundamental processes that occur in the lithium-ion battery. Furthermore, it reviews each of the major chemistries that are in use today, including Lithium-Iron Phosphate (LFP), Lithium-Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium-Nickel Manganese Cobalt (NMC), Lithium-Nickel Cobalt Aluminium (NCA), and Lithium-Titanate Oxide (LTO) and outlines the different types of anodes, including carbon (graphite, hard carbon, soft carbon, graphene), silicon, and tin. In addition, the book offers performance comparisons of different chemistries to help users select the right battery for the right application and provides explanations on why different chemistries have different performances and capabilities. Finally, it offers a brief look at emerging and beyond-lithium chemistries, including lithium-air, zinc-air, aluminum air, solid-state, lithium-sulfur, lithium-glass, and lithium-metal. Presents a refresher on the basics of electrochemistry and thermodynamics, along with simple graphics and images of complex concepts Provides a clear-and-concise description of lithium-ion chemistries and how they operate Covers the fundamental processes that occur in lithium-ion batteries Includes a detailed review of current and future chemistries

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage PDF

Author: Zuoqian Wang

Publisher:

Published: 2013

Total Pages: 210

ISBN-13:

DOWNLOAD EBOOK →

This study examines the feasibility of utilizing traditional flexographic printing technology for large-scale zinc-based battery manufacturing for grid energy storage applications. The design and development of functional flexographic inks is the main goal of this study. Printed battery electrochemical performance is also a focus area. Long-life, energy dense, cost effective electrochemical energy storage systems for power grid applications have become a fast-emerging industry in recent decades. Grid energy storage is widely regarded as an important component of the smart grid, because of its potential role in complementing intermittent renewable energy sources. However, battery technologies have not improved much over the past few decades. Both new battery chemistries and fabrication processes are needed to significantly reduce battery cost and to allow for easy integration with renewables. Printable batteries were designed based on fundamental electrochemical principles governing the battery performance, including thermodynamics, reaction kinetics as well as transport properties. With cost and application factors taken into account, practical battery system design criteria were also summarized with regard to battery geometry, chemistry and fabrication technology. A survey of current main printing technologies was conducted. Based on the criteria developed for functional printing process design and selection, a comparison of the technologies was made and a roll-to-roll flexographic printing process for rechargeable zinc-based battery manufacturing was proposed. Based on the fundamental operating mechanism of flexography, key criteria for developing functional flexographic printing inks were established, including composite ink rheology (steady-state viscosity and yield stress), ink wettability as well as ink dispersing qualities. The ink viscosity significantly influences the ink transfer efficiency while the yield stress critically determines its structural integrity once transferred on flexible substrate. The ink wettability indicates the ink spreading properties and film uniformity while the ink dispersing quality affects the ink homogeneity from before printing through the printing process. A variety of MnO2 cathode inks were formulated and analyzed based on these criteria. A novel type of aqueous cathode ink based on PSBR polymeric binder showed excellent flexographic printability. Extensive electrochemical characterizations with the flexographically printed PSBR-based composite MnO2 cathode were then conducted. Full cells consisting of dispenser-printed electrolytes and zinc foil anodes were assembled. The cyclic voltammetry method was used to study the reversible zinc intercalation through ionic liquid electrolyte into the aqueous-based cathode. Galvanostatic cycling showed that the cell capacity stabilized after about twenty cycles and the capacity varied significantly with discharge current density. Electrochemical impedance spectroscopy measurements revealed the interfacial resistance between the gel electrolyte and zinc foil, as well as the evolution of impedance components through cycling, for a full zinc- based cell system. Coin cells based on zinc/ionic liquid electrolyte/MnO2 chemistry were made in an inert argon environment and then characterized to study zinc-based chemistry performance in this controllable environment. The coin cells showed comparable behavior to batteries printed in the ambient environment. Printable PSBR-based nickel current collector inks have also been developed for an entirely printable zinc-based battery, to conveniently integrate with other electronics on non-conductive, flexible substrates. An integrated energy-harvesting prototype was fabricated, which was consisted of dispenser- printed thermoelectric energy harvesting and electrochemical energy storage devices with a commercial voltage step-up converter. Parallel-connected thermoelectric devices with low internal resistances were designed, fabricated and characterized. The use of a commercially available DC-to-DC converter was explored to step-up a 27.1mV input voltage from a printed thermoelectric device to a regulated 2.34V output. The voltage step-up circuit efficiency reached as maximum of 32.4% during the battery charging process while the battery charging efficiency was approximately 67%. The prototype presented in this study demonstrates the feasibility of deploying a printable, cost-effective and perpetual power solution for practical wireless sensor network applications. This work paves the path for potential integration of printable photovoltaic cell, zinc-based battery as well as relevant electronics for grid energy storage applications.