Principles of X-ray Crystallography

Principles of X-ray Crystallography PDF

Author: Li-ling Ooi

Publisher: Oxford University Press, USA

Published: 2010

Total Pages: 168

ISBN-13: 0199569045

DOWNLOAD EBOOK →

"With an understanding of three-dimensional structure being so central to the understanding of molecular function, Principles of X-ray Crystallography is the perfect guide for anyone needing to gain a working insight into X-ray crystallography." --Book Jacket.

Principles of Protein X-ray Crystallography

Principles of Protein X-ray Crystallography PDF

Author: Jan Drenth

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 355

ISBN-13: 1475730926

DOWNLOAD EBOOK →

New textbooks at all levels of chemistry appear with great regularity. Some fields such as basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research that is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive intro ductions to their fields. These should serve the needs of one-semester or one-quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. Charles R. Cantor v Preface to the Second Edition Since the publication of the previous edition in 1994, X-ray crystallography of proteins has advanced by improvements in existing techniques and by addition of new techniques.

X-Ray Diffraction Crystallography

X-Ray Diffraction Crystallography PDF

Author: Yoshio Waseda

Publisher: Springer Science & Business Media

Published: 2011-03-18

Total Pages: 320

ISBN-13: 3642166350

DOWNLOAD EBOOK →

X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

X-Ray Diffraction for Materials Research

X-Ray Diffraction for Materials Research PDF

Author: Myeongkyu Lee

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 302

ISBN-13: 1315361973

DOWNLOAD EBOOK →

X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.

Principles of Protein X-ray Crystallography

Principles of Protein X-ray Crystallography PDF

Author: Jan Drenth

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 355

ISBN-13: 1475730926

DOWNLOAD EBOOK →

New textbooks at all levels of chemistry appear with great regularity. Some fields such as basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research that is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive intro ductions to their fields. These should serve the needs of one-semester or one-quarter graduate courses in chemistry and biochemistry. In some cases, the availability of texts in active research areas should help stimulate the creation of new courses. Charles R. Cantor v Preface to the Second Edition Since the publication of the previous edition in 1994, X-ray crystallography of proteins has advanced by improvements in existing techniques and by addition of new techniques.

Thin Film Analysis by X-Ray Scattering

Thin Film Analysis by X-Ray Scattering PDF

Author: Mario Birkholz

Publisher: John Wiley & Sons

Published: 2006-05-12

Total Pages: 378

ISBN-13: 3527607048

DOWNLOAD EBOOK →

With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.

Fundamentals of X-ray Crystallography

Fundamentals of X-ray Crystallography PDF

Author: Dongcai Liang

Publisher: Alpha Science International, Limited

Published: 2011

Total Pages: 0

ISBN-13: 9781842655719

DOWNLOAD EBOOK →

FUNDAMENTALS OF X-RAY CRYSTALLOGRAPHY is based on the author's research and teaching experience over many years. Using geometric concepts and methods it systematically analyses and deduces the crystal symmetry principle and the crystal diffraction theory, establishing distinctive three-dimensional concepts which are easy to understand, grasp and apply. This book lays the foundation for study of crystallography, crystal structure analysis and protein crystallography. It is a must-have for undergraduate and postgraduate students and a very good reference for researchers engaged in relevant studies.

X-Ray Crystallography of Biomacromolecules

X-Ray Crystallography of Biomacromolecules PDF

Author: Albrecht Messerschmidt

Publisher: John Wiley & Sons

Published: 2007-02-27

Total Pages: 318

ISBN-13: 3527609679

DOWNLOAD EBOOK →

Written by one of the most significant contributors to the progress of protein crystallography, this practical guide contains case studies, a troubleshooting section and pointers on data interpretation. It covers the theory, practice and latest achievements in x-ray crystallography, such that any researcher in structural biology will benefit from this extremely clearly written book. Part A covers the theoretical basis and such experimental techniques as principles of x-ray diffraction, solutions for the phase problem and time-resolved x-ray crystallography. Part B includes case studies for different kinds of x-ray crystal structure determination, such as the MIRAS and MAD techniques, molecular replacement, and the difference Fourier technique.

X-ray Diffraction

X-ray Diffraction PDF

Author: Kaimin Shih

Publisher: Nova Science Publishers

Published: 2013

Total Pages: 0

ISBN-13: 9781628085914

DOWNLOAD EBOOK →

An important milestone in the history of science, the diffraction of X-rays, was observed by Max von Laue in 1912. In the last 100 years, X-ray diffraction (XRD) studies have revealed highly valuable information about many ordered atomic structures seen in a variety of common materials. The understanding of material structures opened the door to the reliable application of these materials and allowed scientific discussions about material properties and structural features to become possible. Besides playing this crucial role in history, XRD has now also successfully transformed itself into a method in the forefront of extending much of our knowledge boundaries. Written by more than 30 X-ray diffraction experts from 9 countries/regions, this book consists of 11 chapters examining the development of the XRD technique and demonstrating various new opportunities for its application. Each chapter discusses timely and important subjects surrounding the XRD technique, including the past and future of the single-crystal XRD technique and new explorations with co-ordination polymers; the very successful implementation of Rietveld refinement analysis for alloys, intermetallics, cements, and ceramics; the application of XRD in nanoparticles structure study; the methodological developments in quantifying the state of residual stress in materials; and the state-of-the-art progress in combining XRD principles with electron crystallography for structure determination.