Principles of Loads and Failure Mechanisms

Principles of Loads and Failure Mechanisms PDF

Author: T Tinga

Publisher: Springer Science & Business Media

Published: 2013-02-01

Total Pages: 309

ISBN-13: 1447149173

DOWNLOAD EBOOK →

Failure of components or systems must be prevented by both designers and operators of systems, but knowledge of the underlying mechanisms is often lacking. Since the relation between the expected usage of a system and its failure behavior is unknown, unexpected failures often occur, with possibly serious financial and safety consequences. Principles of Loads and Failure Mechanisms. Applications in Maintenance, Reliability and Design provides a complete overview of all relevant failure mechanisms, ranging from mechanical failures like fatigue and creep to corrosion and electric failures. Both qualitative and quantitative descriptions of the mechanisms and their governing loads enable a solid assessment of a system’s reliability in a given or assumed operational context. Moreover, a unique range of applications of this knowledge in the fields of maintenance, reliability and design are presented. The benefits of understanding the physics of failure are demonstrated for subjects like condition monitoring, predictive maintenance, prognostics and health management, failure analysis and reliability engineering. Finally, the role of these mechanisms in design processes and design for maintenance are illustrated.

Failure Analysis

Failure Analysis PDF

Author: Marius Bazu

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 372

ISBN-13: 1119990009

DOWNLOAD EBOOK →

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.

Failure Mechanisms of Complex Systems

Failure Mechanisms of Complex Systems PDF

Author: Shahnewaz Siddique

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Understanding the behavior of complex, large-scale, interconnected systems in a rigorous and structured manner is one of the most pressing scientific and technological challenges of current times. These systems include, among many others, transportation and communications systems, smart grids and power grids, financial markets etc. Failures of these systems have potentially enormous social, environmental and financial costs. In this work, we investigate the failure mechanisms of load-sharing complex systems. The systems are composed of multiple nodes or components whose failures are determined based on the interaction of their respective strengths and loads (or capacity and demand respectively) as well as the ability of a component to share its load with its neighbors when needed. Each component possesses a specific strength (capacity) and can be in one of three states: failed, damaged or functioning normally. The states are determined based on the load (demand) on the component. We focus on two distinct mechanisms to model the interaction between components strengths and loads. The first, a Loss of Strength (LOS) model and the second, a Customer Service (CS) model. We implement both models on lattice and scale-free graph network topologies. The failure mechanisms of these two models demonstrate temporal scaling phenomena, phase transitions and multiple distinct failure modes excited by extremal dynamics. We find that the resiliency of these models is sensitive to the underlying network topology. For critical ranges of parameters the models demonstrate power law and exponential failure patterns. We find that the failure mechanisms of these models have parallels to failure mechanisms of critical infrastructure systems such as congestion in transportation networks, cascading failure in electrical power grids, creep-rupture in composite structures, and draw-downs in financial markets. Based on the different variants of failure, strategies for mitigating and postponing failure in these critical infrastructure systems can be formulated.

Failure Analysis

Failure Analysis PDF

Author: Jose Luis Otegui

Publisher: Springer Science & Business Media

Published: 2014-01-02

Total Pages: 326

ISBN-13: 3319039105

DOWNLOAD EBOOK →

This book addresses the failures of structural elements, i.e. those components whose primary mission is to withstand mechanical loads. The book is intended as a self-contained source for those with different technical grades, engineers and scientists but also technicians in the field can benefit from its reading.

Electrical Connectors

Electrical Connectors PDF

Author: San Kyeong

Publisher: John Wiley & Sons

Published: 2020-12-29

Total Pages: 388

ISBN-13: 1119679761

DOWNLOAD EBOOK →

Discover the foundations and nuances of electrical connectors in this comprehensive and insightful resource Electrical Connectors: Design, Manufacture, Test, and Selection delivers a comprehensive discussion of electrical connectors, from the components and materials that comprise them to their classifications and underwater, power, and high-speed signal applications. Accomplished engineer and author Michael G. Pecht offers readers a thorough explanation of the key performance and reliability concerns and trade-offs involved in electrical connector selection. Readers, both at introductory and advanced levels, will discover the latest industry standards for performance, reliability, and safety assurance. The book discusses everything a student or practicing engineer might require to design, manufacture, or select a connector for any targeted application. The science of contact physics, contact finishes, housing materials, and the full connector assembly process are all discussed at length, as are test methods, performance, and guidelines for various applications. Electrical Connectors covers a wide variety of other relevant and current topics, like: A comprehensive description of all electrical connectors, including their materials, components, applications, and classifications A discussion of the design and manufacture of all parts of a connector Application-specific criteria for contact resistance, signal quality, and temperature rise An examination of key suppliers, materials used, and the different types of data provided A presentation of guidelines for end-users involved in connector selection and design Perfect for connector manufacturers who select, design, and assemble connectors for their products or the end users who concern themselves with operational reliability of the system in which they’re installed, Electrical Connectors also belongs on the bookshelves of students learning the basics of electrical contacts and those who seek a general reference with best-practice advice on how to choose and test connectors for targeted applications.

Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry

Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry PDF

Author: Abdel Salam Hamdy Makhlouf

Publisher: Butterworth-Heinemann

Published: 2015-09-01

Total Pages: 451

ISBN-13: 0081001266

DOWNLOAD EBOOK →

Handbook of Materials Failure Analysis: With Case Studies from the Oil and Gas Industry provides an updated understanding on why materials fail in specific situations, a vital element in developing and engineering new alternatives. This handbook covers analysis of materials failure in the oil and gas industry, where a single failed pipe can result in devastating consequences for people, wildlife, the environment, and the economy of a region. The book combines introductory sections on failure analysis with numerous real world case studies of pipelines and other types of materials failure in the oil and gas industry, including joint failure, leakage in crude oil storage tanks, failure of glass fibre reinforced epoxy pipes, and failure of stainless steel components in offshore platforms, amongst others. Introduces readers to modern analytical techniques in materials failure analysis Combines foundational knowledge with current research on the latest developments and innovations in the field Includes numerous compelling case studies of materials failure in oil and gas pipelines and drilling platforms

Product Reliability, Maintainability, and Supportability Handbook

Product Reliability, Maintainability, and Supportability Handbook PDF

Author: Michael Pecht

Publisher: CRC Press

Published: 1995-05-04

Total Pages: 450

ISBN-13: 9780849394577

DOWNLOAD EBOOK →

This unique publication addresses the role of reliability, maintainability, and supportability in the life-cycle of a product, in the context of product effectiveness and worth. It emphasizes all aspects of producing an effective electrical or mechanical system. This is the only handbook available on this subject and the only book that is this comprehensive and informative. The Product Reliability, Maintainability, and Supportability Handbook examines the logistics, cost, and the physics of failure-topics never before found in a single volume on reliability. It describes the factors that affect product effectiveness and worth: performance, reliability, design effectiveness and margin for error, availability, affordability, use effectiveness, and logistic effectiveness. The handbook contains 13 in-depth chapters, opening with an introduction on product effectiveness and worth and concluding with reliability and maintainability data that can be combined with performance data to assess overall effectiveness of the product. The pages are filled with valuable information that can be easily and quickly put to practical use. Basic principles of the mathematical theory of probability and necessary background are provided. Concepts and basic theory of reliability in terms of probability and statistical inference are also given. Techniques for deriving probabilistic models from observational data as well as reliability models and associated validation techniques are detailed. Software and software reliability, quality, and safety are all covered, including the development life-cycle process and mechanisms by which software errors are introduced. The book presents design guidelines and techniques and the requirements for materials, manufacturing, and assembly. Learn how to analyze the reliability of redundant and fault-tolerant products. Use the methods for modeling and analyzing failures of repairable products that normally exhibit wearout characteristics. The Product Reliability, Maintainability, and Supportability Handbook also provides reliability improvement techniques to improve the competitiveness of existing products. The book includes helpful summaries and numerous problem sections to reinforce and test learned information. This reference source is the guide that professionals and technical managers should turn to when they need a comprehensive and detailed overview of everything that goes into producing systems and products that meet customer needs in an effective and timely manner.

Failure Analysis and Prevention

Failure Analysis and Prevention PDF

Author: Aidy Ali

Publisher: BoD – Books on Demand

Published: 2017-12-20

Total Pages: 218

ISBN-13: 9535137131

DOWNLOAD EBOOK →

This book covers recent advancement methods used in analysing the root cause of engineering failures and the proactive suggestion for future failure prevention. The techniques used especially non-destructive testing such X-ray are well described. The failure analysis covers materials for metal and composites for various applications in mechanical, civil and electrical applications. The modes of failures that are well explained include fracture, fatigue, corrosion and high-temperature failure mechanisms. The administrative part of failures is also presented in the chapter of failure rate analysis. The book will bring you on a tour on how to apply mechanical, electrical and civil engineering fundamental concepts and to understand the prediction of root cause of failures. The topics explained comprehensively the reliable test that one should perform in order to investigate the cause of machines, component or material failures at the macroscopic and microscopic level. I hope the material is not too theoretical and you find the case study, the analysis will assist you in tackling your own failure investigation case.

Principles of Engineering Geology

Principles of Engineering Geology PDF

Author: P.B. Attewell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1075

ISBN-13: 9400957076

DOWNLOAD EBOOK →

'Engineering geology' is one of those terms that invite definition. The American Geological Institute, for example, has expanded the term to mean 'the application of the geological sciences to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation and mainten ance of engineering works are recognized and adequately provided for'. It has also been defined by W. R. Judd in the McGraw-Hill Encyclopaedia of Science and Technology as 'the application of education and experience in geology and other geosciences to solve geological problems posed by civil engineering structures'. Judd goes on to specify those branches of the geological or geo-sciences as surface (or surficial) geology, structural/fabric geology, geohydro logy, geophysics, soil and rock mechanics. Soil mechanics is firmly included as a geological science in spite of the perhaps rather unfortunate trends over the years (now happily being reversed) towards purely mechanistic analyses which may well provide acceptable solutions for only the simplest geology. Many subjects evolve through their subject areas from an interdisciplinary background and it is just such instances that pose the greatest difficulties of definition. Since the form of educational development experienced by the practitioners of the subject ulti mately bears quite strongly upon the corporate concept of the term 'engineering geology', it is useful briefly to consider that educational background.