Principles of Nonlinear Optical Spectroscopy

Principles of Nonlinear Optical Spectroscopy PDF

Author: Shaul Mukamel

Publisher: Oxford University Press, USA

Published: 1995

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK →

Nonlinear optical interaction of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. This volume provides a systematic account of a wide class of nonlinear spectroscopic techniques, in time domain and frequency domain, for researchers and graduate students in the field. Current active research areas such as ultrafast time-domain techniques, the interplay of phase coherence in the matter and the coherence properties of the radiation field, experiments involving phase-controlled pulse sequences, and cooperative effects in nanostructures are emphasized. Annotation copyright by Book News, Inc., Portland, OR

The Principles of Nonlinear Optics

The Principles of Nonlinear Optics PDF

Author: Y. R. Shen

Publisher: Wiley-Interscience

Published: 2003

Total Pages: 596

ISBN-13:

DOWNLOAD EBOOK →

A comprehensive treatment of nonlinear optics emphasizing physical concepts and the relationhip between theory and experiment. Systematically describes a number of sub-topics in the field. Up-to-date references and numerous illustrations will help both beginners and practitioners interested in gaining a more thorough understanding of the subject.

Epioptics

Epioptics PDF

Author: John F. McGilp

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 235

ISBN-13: 3642798209

DOWNLOAD EBOOK →

The study of condensed matter using optical techniques, where photons act as both probe and signal, has a long history. It is only recently, however, that the extraction of surface and interface information, with submonolayer resolution, has been shown to be possible using optical techniques (where "optical" applies to electromagnetic radiation in and around the visible region of the spectrum). This book describes these "epioptic" techniques, which have now been quite widely applied to semiconductor surfaces and interfaces. Particular emphasis in the book is placed on recent studies of submonolayer growth on well-characterised semiconductor surfaces, many of which have arisen from CEC DGJGII ESPRIT Basic Research Action No. 3177 "EPIOPTIC", and CEU DGIII ESPRIT Basic Research Action No. 6878 "EASI". Techniques using other areas of the spectrum such as the infra-red region (IR spectroscopy, in its various surface configurations), and the x-ray region (surface x-ray diffraction, x-ray standing wave), are omitted. The optical techniques described use simple lamp or small laser sources and are thus, in principle, easily accessible. Epioptic probes can provide new information on solid-gas, solid-liquid and liquid-liquid interfaces. They are particularly suited to growth monitoring. Emerging process technologies for fabricating submicron and nanoscale semiconductor devices and novel multilayer materials, whether based on silicon or compound semiconductors, all require extremely precise control of growth at surfaces. In situ, non-destructive, real-time monitoring and characterisation of surfaces under growth conditions is needed for further progress. Both atomic scale resolution, and non-destructive characterisation of buried structures, are required.

Linear and Nonlinear Optics

Linear and Nonlinear Optics PDF

Author: Kitsakorn Locharoenrat

Publisher: CRC Press

Published: 2021-01-31

Total Pages: 345

ISBN-13: 1000091848

DOWNLOAD EBOOK →

In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations. This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.

Linear and Nonlinear Optical Spectroscopy and Microscopy

Linear and Nonlinear Optical Spectroscopy and Microscopy PDF

Author: Mengtao Sun

Publisher: Springer

Published: 2024-02-02

Total Pages: 0

ISBN-13: 9789819936366

DOWNLOAD EBOOK →

The nonlinear optical spectrum signal technology is a new type of optical characterization technology owing to its non-invasiveness and good biocompatibility. This book highlights a comprehensive introduction to the Stimulated Raman scattering (SRS), Anti-Stokes Raman Spectroscopy (CARS), Two-photon Excited Fluorescence (TPEF) and Second Harmonic Generation signals (SHG) technologies. The four types of nonlinear optical signals technologies, especially two-dimensional and three-dimensional imaging, have great application potential in physics, materials science, chemistry and biomedicine. The book covers principles, theoretical calculation methods, signal measurement methods and imaging specific methods. The theoretical part starts from the basics of nonlinear optics and the relationship with strong light, and gradually transitions to theoretical calculation methods for specific optical signals. it combines the classical theory and the quantum theory to help readers develop a thorough understanding of the technologies. The book is a good reference for graduate students majored in physics and chemistry and for researchers working on optics, photonics and materials science.

Photonics

Photonics PDF

Author: Ralf Menzel

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 895

ISBN-13: 3662045214

DOWNLOAD EBOOK →

Deals with the fundamental properties of photon and light beams, both experimentally and theoretically. It covers the essentials of linear interactions and most of the nonlinear interactions between light and matter in both the transparent and absorbing cases. About 4000 references open access to original literature.

Physics of Nonlinear Optics

Physics of Nonlinear Optics PDF

Author: Guangsheng He

Publisher: World Scientific

Published: 1999

Total Pages: 582

ISBN-13: 9789810233198

DOWNLOAD EBOOK →

Nonlinear optics has been a rapidly growing field in recent decades. It is based on the study of effects and phenomena related to the interaction of intense coherent light radiation with matter. Physics of Nonlinear Optics describes various major nonlinear optical effects, including physical principles, experimental techniques, up-to-date research achievements, and current or potential applications. This book features clear conceptual descriptions, concise formulations, and emphasizes both theoretical and experimental aspects of nonlinear optics. The readability of this book is particularly enhanced by a series of color photographs showing the spectacular appearances of various nonlinear optical effects. Both authors of this book are outstanding research scientists renowned in their professional areas. Their major research achievements in nonlinear optics include the pioneering studies of two-wave-coupled refractive-index change, Raman-enhanced self-focusing, optical-frequency Pockels effect, stimulated Kerr scattering, optical phase-conjugation via backward stimulated emission, and two-photon-absorption based optical limiting, stabilization and reshaping.