Principles of Differential and Integral Equations

Principles of Differential and Integral Equations PDF

Author: C. Corduneanu

Publisher: American Mathematical Soc.

Published: 2008-05-09

Total Pages: 205

ISBN-13: 0821846221

DOWNLOAD EBOOK →

In summary, the author has provided an elegant introduction to important topics in the theory of ordinary differential equations and integral equations. -- Mathematical Reviews This book is intended for a one-semester course in differential and integral equations for advanced undergraduates or beginning graduate students, with a view toward preparing the reader for graduate-level courses on more advanced topics. There is some emphasis on existence, uniqueness, and the qualitative behavior of solutions. Students from applied mathematics, physics, and engineering will find much of value in this book. The first five chapters cover ordinary differential equations. Chapter 5 contains a good treatment of the stability of ODEs. The next four chapters cover integral equations, including applications to second-order differential equations. Chapter 7 is a concise introduction to the important Fredholm theory of linear integral equations. The final chapter is a well-selected collection of fascinating miscellaneous facts about differential and integral equations. The prerequisites are a good course in advanced calculus, some preparation in linear algebra, and a reasonable acquaintance with elementary complex analysis. There are exercises throughout the text, with the more advanced of them providing good challenges to the student.

Ordinary Differential Equations

Ordinary Differential Equations PDF

Author: A. K. Nandakumaran

Publisher: Cambridge University Press

Published: 2017-05-11

Total Pages: 349

ISBN-13: 1108416411

DOWNLOAD EBOOK →

An easy to understand guide covering key principles of ordinary differential equations and their applications.

Principles of Differential Equations

Principles of Differential Equations PDF

Author: Nelson G. Markley

Publisher: John Wiley & Sons

Published: 2011-10-14

Total Pages: 354

ISBN-13: 1118031539

DOWNLOAD EBOOK →

An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.

Implicit Fractional Differential and Integral Equations

Implicit Fractional Differential and Integral Equations PDF

Author: Saïd Abbas

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-02-05

Total Pages: 359

ISBN-13: 311055318X

DOWNLOAD EBOOK →

This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations

Analysis of Approximation Methods for Differential and Integral Equations

Analysis of Approximation Methods for Differential and Integral Equations PDF

Author: Hans-Jürgen Reinhardt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 1461210801

DOWNLOAD EBOOK →

This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations PDF

Author: R Precup

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 221

ISBN-13: 9401599866

DOWNLOAD EBOOK →

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.

Differential and Integral Equations

Differential and Integral Equations PDF

Author: Peter J. Collins

Publisher: Oxford University Press

Published: 2006-08-03

Total Pages: 387

ISBN-13: 0198533829

DOWNLOAD EBOOK →

Differential & integral equations involve important mathematical techniques, & as such will be encountered by mathematicians, & physical & social scientists, in their undergraduate courses. This text provides a clear, comprehensive guide to first- & second- order ordinary & partial differential equations.