Polymers in Organic Electronics

Polymers in Organic Electronics PDF

Author: Sulaiman Khalifeh

Publisher: Elsevier

Published: 2020-04-01

Total Pages: 617

ISBN-13: 192788568X

DOWNLOAD EBOOK →

Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is designed to help readers select the optimized material for structuring their organic electronic system.Chapters discuss the most common properties of electronic polymers, methods of optimization, and polymeric-structured printed circuit boards. The polymeric structures of optoelectronics and photonics are covered and the book concludes with a chapter emphasizing the importance of polymeric structures for packaging of electronic devices. Provides key identifying details on a range of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers Covers the most common electrical, electronic, and optical properties of electronic polymers Describes the underlying theories on the mechanics of polymer conductivity Discusses polymeric structured printed circuit boards, including their rapid prototyping and optimizing their polymeric structures Shows optimization methods for both polymeric structures of organic active electronic components and organic passive electronic components

Organic Electronics

Organic Electronics PDF

Author: Gregor Meller

Publisher: Springer

Published: 2009-12-23

Total Pages: 338

ISBN-13: 3642045383

DOWNLOAD EBOOK →

Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called “plastic chips” ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.

Organic Electronic Materials

Organic Electronic Materials PDF

Author: R. Farchioni

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 457

ISBN-13: 3642564259

DOWNLOAD EBOOK →

This book brings together selected contributions both on the fundamental information on the physics and chemistry of these materials, new physical ideas and decisive experiments. It constitutes both an insightful treatise and a handy reference for specialists and graduate students working in solid state physics and chemistry, material science and related fields.

Polymer Electronics

Polymer Electronics PDF

Author: Mark Geoghegan

Publisher: Oxford Master Physics

Published: 2013-04-04

Total Pages: 271

ISBN-13: 0199533822

DOWNLOAD EBOOK →

Polymer electronics lies behind many important new developments in technology, such as the flexible electronic display (e-ink) and modern transistor technology. This book presents a thorough discussion of the physics and chemistry behind this exciting field, appealing to all physical scientists with an interest in polymer electronics.

Electronic Structure of Organic Semiconductors

Electronic Structure of Organic Semiconductors PDF

Author: Luís Alcácer

Publisher: Morgan & Claypool Publishers

Published: 2018-12-07

Total Pages: 135

ISBN-13: 1643271687

DOWNLOAD EBOOK →

Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.

Electronic Processes in Organic Crystals and Polymers

Electronic Processes in Organic Crystals and Polymers PDF

Author: Martin Pope

Publisher:

Published: 1999

Total Pages: 1368

ISBN-13:

DOWNLOAD EBOOK →

The first edition of Pope and Swenberg's Electronic Processes of Organic Crystals, published in 1982, became the classic reference in the field. It provided a tutorial on the experimental and related theoretical properties of aromatic hydrocarbon crystals and included emerging work on polymers and superconductivity. This new edition contains the complete text of the first edition, plus an extensive new section, comprising nearly half of the book, which covers recent developments and applications with polymers. The book provides a unified description of what is known in almost every aspect of the field, from basic phenomena to the latest practical applications, which include LED's, photocopiers, photoconductors, batteries, transistors, liquid crystals, photorefractive devices, and sensors.

Organic Radical Polymers

Organic Radical Polymers PDF

Author: Sanjoy Mukherjee

Publisher: Springer

Published: 2017-06-22

Total Pages: 80

ISBN-13: 3319585746

DOWNLOAD EBOOK →

This book provides a detailed introduction to organic radical polymers and open-shell macromolecules. Functional macromolecules have led to marked increases in a wide range of technologies, and one of the fastest growing of these fields is that of organic electronic materials and devices. To date, synthetic and organic electronic device efforts have focused almost exclusively on closed-shell polymers despite the promise of open-shell macromolecules in myriad applications. This text represents the first comprehensive review of the design, synthesis, characterization, and device applications of open-shell polymers. In particular, it will summarize the impressive synthetic and device performance efforts that have been achieved with respect to energy storage, energy conversion, magnetic, and spintronic applications. By combining comprehensive reviews with a wealth of informative figures, the text provides the reader with a complete “molecules-to-modules” understanding of the state of the art in open-shell macromolecules. Moreover, the monograph highlights future directions for open-shell polymers in order to allow the reader to be part of the community that continues to build the field. In this way, the reader will gain a rapid understanding of the field and will have a clear pathway to utilize these materials in next-generation applications.

Technology Guide

Technology Guide PDF

Author: Hans-Jörg Bullinger

Publisher: Springer Science & Business Media

Published: 2009-05-10

Total Pages: 560

ISBN-13: 3540885463

DOWNLOAD EBOOK →

Use this technology guide to find descriptions of today’s most essential global technologies. Clearly structured and simply explained, the book’s reference format invites even the casual reader to explore the stimulating innovative ideas it contains.

Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices PDF

Author: Beata Luszczynska

Publisher: John Wiley & Sons

Published: 2019-09-16

Total Pages: 686

ISBN-13: 352734442X

DOWNLOAD EBOOK →

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Polymer Materials for Energy and Electronic Applications

Polymer Materials for Energy and Electronic Applications PDF

Author: Huisheng Peng

Publisher: Academic Press

Published: 2016-09-01

Total Pages: 386

ISBN-13: 0128110929

DOWNLOAD EBOOK →

Polymer Materials for Energy and Electronic Applications is among the first books to systematically describe the recent developments in polymer materials and their electronic applications. It covers the synthesis, structures, and properties of polymers, along with their composites. In addition, the book introduces, and describes, four main kinds of electronic devices based on polymers, including energy harvesting devices, energy storage devices, light-emitting devices, and electrically driving sensors. Stretchable and wearable electronics based on polymers are a particular focus and main achievement of the book that concludes with the future developments and challenges of electronic polymers and devices. Provides a basic understanding on the structure and morphology of polymers and their electronic properties and applications Highlights the current applications of conducting polymers on energy harvesting and storage Introduces the emerging flexible and stretchable electronic devices Adds a new family of fiber-shaped electronic devices