Heterogeneous Catalysts

Heterogeneous Catalysts PDF

Author: Wey Yang Teoh

Publisher: John Wiley & Sons

Published: 2021-02-23

Total Pages: 768

ISBN-13: 352781356X

DOWNLOAD EBOOK →

Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts

Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts PDF

Author: Richard Esposito

Publisher:

Published: 2009

Total Pages: 0

ISBN-13: 9781606927731

DOWNLOAD EBOOK →

This book presents current research in fuel cells which are growing in importance as sources of sustainable energy and are forming part of the changing program of energy resources. Fuel cells provide environmentally friendly, clean and highly efficient energy source for power generation. In order to efficiently utilize the energy from fuel cells, a power conditioning system is required. This book describes the converters' basic operating principles and analyzes performance for low-voltage, high-power fuel cell applications. Full three-dimensional, multi-phase, non-isothermal computational fluid dynamics models of planar and novel tubular-shaped air-breathing proton exchange membrane fuel cell are also presented in detail. Research and review of electrocatalysts such as platinum are presented as well.

PEM Fuel Cell Electrocatalysts and Catalyst Layers

PEM Fuel Cell Electrocatalysts and Catalyst Layers PDF

Author: Jiujun Zhang

Publisher: Springer Science & Business Media

Published: 2008-08-26

Total Pages: 1147

ISBN-13: 1848009364

DOWNLOAD EBOOK →

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

PEM Fuel Cells

PEM Fuel Cells PDF

Author: Gurbinder Kaur

Publisher: Elsevier

Published: 2021-11-16

Total Pages: 584

ISBN-13: 0128237090

DOWNLOAD EBOOK →

PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides a comprehensive introduction to the principles of PEM fuel cell, their working condition and application, and the latest breakthroughs and challenges for fuel cell technology. Each chapter follows a systematic and consistent structure with clear illustrations and diagrams for easy understanding. The opening chapters address the basics of PEM technology; stacking and membrane electrode assembly for PEM, degradation mechanisms of electrocatalysts, platinum dissolution and redeposition, carbon-support corrosion, bipolar plates and carbon nanotubes for the PEM, and gas diffusion layers. Thermodynamics, operating conditions, and electrochemistry address fuel cell efficiency and the fundamental workings of the PEM. Instruments and techniques for testing and diagnosis are then presented alongside practical tests. Dedicated chapters explain how to use MATLAB and COMSOL to conduct simulation and modeling of catalysts, gas diffusion layers, assembly, and membrane. Degradation and failure modes are discussed in detail, providing strategies and protocols for mitigation. High-temperature PEMs are also examined, as are the fundamentals of EIS. Critically, the environmental impact and life cycle of the production and storage of hydrogen are addressed, as are the risk and durability issues of PEMFC technology. Dedicated chapters are presented on the economics and commercialization of PEMFCs, including discussion of installation costs, initial capital costs, and the regulatory frameworks; apart from this, there is a separate chapter on their application to the automotive industry. Finally, future challenges and applications are considered. PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application provides an in-depth and comprehensive reference on every aspect of PEM fuel cells fundamentals, ideal for researchers, graduates, and students. Presents the fundamentals of PEM fuel cell technology, electrolytes, membranes, modeling, conductivity, recent trends, and future applications Addresses commercialization, public policy, and the environmental impacts of PEMFC in dedicated chapters Presents state-of-the-art PEMFC research alongside the underlying concepts

High Temperature Polymer Electrolyte Membrane Fuel Cells

High Temperature Polymer Electrolyte Membrane Fuel Cells PDF

Author: Qingfeng Li

Publisher: Springer

Published: 2015-10-15

Total Pages: 561

ISBN-13: 3319170821

DOWNLOAD EBOOK →

This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Polymer Electrolyte Fuel Cells

Polymer Electrolyte Fuel Cells PDF

Author: Alejandro A. Franco

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 608

ISBN-13: 9814364401

DOWNLOAD EBOOK →

This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology PDF

Author: Christoph Hartnig

Publisher: Elsevier

Published: 2012-03-19

Total Pages: 437

ISBN-13: 0857095471

DOWNLOAD EBOOK →

Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques

Electrocatalysis in Fuel Cells

Electrocatalysis in Fuel Cells PDF

Author: Minhua Shao

Publisher: MDPI

Published: 2018-09-28

Total Pages: 689

ISBN-13: 3038422347

DOWNLOAD EBOOK →

This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts