Vehicle-to-Grid

Vehicle-to-Grid PDF

Author: Junwei Lu

Publisher: IET

Published: 2015-07-17

Total Pages: 271

ISBN-13: 1849198551

DOWNLOAD EBOOK →

Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid

Plug In Electric Vehicles in Smart Grids

Plug In Electric Vehicles in Smart Grids PDF

Author: Sumedha Rajakaruna

Publisher: Springer

Published: 2014-11-29

Total Pages: 329

ISBN-13: 9812873171

DOWNLOAD EBOOK →

This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles PDF

Author: Ottorino Veneri

Publisher: Springer

Published: 2016-12-30

Total Pages: 323

ISBN-13: 3319436511

DOWNLOAD EBOOK →

This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.

Plug In Electric Vehicles in Smart Grids

Plug In Electric Vehicles in Smart Grids PDF

Author: Sumedha Rajakaruna

Publisher: Springer

Published: 2014-11-29

Total Pages: 355

ISBN-13: 981287299X

DOWNLOAD EBOOK →

This book focuses on the state of the art in worldwide research on applying optimization approaches to intelligently control charging and discharging of batteries of Plug-in Electric Vehicles (PEVs) in smart grids. Network constraints, cost considerations, the number and penetration level of PEVs, utilization of PEVs by their owners, ancillary services, load forecasting, risk analysis, etc. are all different criteria considered by the researchers in developing mathematical based equations which represent the presence of PEVs in electric networks. Different objective functions can be defined and different optimization methods can be utilized to coordinate the performance of PEVs in smart grids. This book will be an excellent resource for anyone interested in grasping the current state of applying different optimization techniques and approaches that can manage the presence of PEVs in smart grids.

Plug In Electric Vehicles in Smart Grids

Plug In Electric Vehicles in Smart Grids PDF

Author: Sumedha Rajakaruna

Publisher: Springer

Published: 2016-09-22

Total Pages: 0

ISBN-13: 9789811013751

DOWNLOAD EBOOK →

This book highlights the cutting-edge research on energy management within smart grids with significant deployment of Plug-in Electric Vehicles (PEV). These vehicles not only can be a significant electrical power consumer during Grid to Vehicle (G2V) charging mode, they can also be smartly utilized as a controlled source of electrical power when they are used in Vehicle to Grid (V2G) operating mode. Electricity Price, Time of Use Tariffs, Quality of Service, Social Welfare as well as electrical parameters of the network are all different criteria considered by the researchers when developing energy management techniques for PEVs. Risk averse stochastic energy hub management, maximizing profits in ancillary service markets, power market bidding strategies for fleets of PEVs, energy management of PEVs in the presence of renewable energy in distribution lines or microgrids and loss minimization in distribution networks based on smart coordination approaches using real time energy prices are some of the attractive and novel topics explored in this book. It will be an excellent reference for graduate students, researchers and industry professionals who are interested in getting a snapshot view of today’s latest research on applying various smart energy management strategies for smart grids with high penetration of PEVs.

Smart Power Grids 2011

Smart Power Grids 2011 PDF

Author: Ali Keyhani

Publisher: Springer Science & Business Media

Published: 2012-01-12

Total Pages: 701

ISBN-13: 3642215785

DOWNLOAD EBOOK →

Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.

Advances in Energy Systems

Advances in Energy Systems PDF

Author: Peter D. Lund

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 576

ISBN-13: 1119508282

DOWNLOAD EBOOK →

A guide to a multi-disciplinary approach that includes perspectives from noted experts in the energy and utilities fields Advances in Energy Systems offers a stellar collection of articles selected from the acclaimed journal Wiley Interdisciplinary Review: Energy and Environment. The journalcovers all aspects of energy policy, science and technology, environmental and climate change. The book covers a wide range of relevant issues related to the systemic changes for large-scale integration of renewable energy as part of the on-going energy transition. The book addresses smart energy systems technologies, flexibility measures, recent changes in the marketplace and current policies. With contributions from a list of internationally renowned experts, the book deals with the hot topic of systems integration for future energy systems and energy transition. This important resource: Contains contributions from noted experts in the field Covers a broad range of topics on the topic of renewable energy Explores the technical impacts of high shares of wind and solar power Offers a review of international smart-grid policies Includes information on wireless power transmission Presents an authoritative view of micro-grids Contains a wealth of other relevant topics Written forenergy planners, energy market professionals and technology developers, Advances in Energy Systems is an essential guide with contributions from an international panel of experts that addresses the most recent smart energy technologies.

Grid-able Plug-in Electric Vehicles in Smart Grids

Grid-able Plug-in Electric Vehicles in Smart Grids PDF

Author: Seyedeh Elham Akhavan Rezai

Publisher:

Published: 2016

Total Pages: 118

ISBN-13:

DOWNLOAD EBOOK →

Electric transportation has attracted a great deal of interest within the transport sector because of its notable potential to become a low-carbon substitute for conventional combustion engine vehicles. However, widespread use of this form of transportation, such as plug-in electric vehicles (PEVs), will constitute a significant draw on power grids, especially when associated with uncontrolled charging schemes. In fact, electric utilities are unable to control individual PEVs in order to manage their charging and avoid negative consequences for distribution lines. However, a control strategy could be directed at a single vehicle or group of vehicles. One effective approach could be to build on a supervisory control system, similar to a SCADA system that manages the aggregation of PEVs, a role that could be filled by aggregators that exchange data and information among individual PEVs and energy service providers. An additional consideration is that advances in intelligent technologies and expert systems have introduced a range of flexible control strategies, which make smart grid implementation more attractive and viable for the power industry. These developments have been accompanied by the initiation of a new paradigm for controllable PEV loads based on a number of advantages associated with a smart grid context. One of the established goals related to smart grids is to build on their ability to take advantage of all available energy resources through efficient, decentralized management. To this end, utilities worldwide are using IT, communication, and sensors to provide enhanced incorporation of operational tools and thus create a more robust and interactive environment able to handle generation-demand dynamics and uncertainties. One of these tools is demand response (DR), a feature that adjusts customers' electricity usage through the offer of incentive payments. Motivated by this background, the goal of the work presented in this thesis was to introduce new operational algorithms that facilitate the charging of PEVs and the employment of their batteries for short-term grid support of active power. To allow both public parking lots and small residential garages to benefit from smart charging for end-user DR, a framework has been developed in which the aggregator handles decision-making through real-time interactions with PEV owners. Two interaction levels are implemented. First, for charging coordination with only one-round interaction, a fuzzy expert system prioritizes PEVs to determine the order in which they will be charged. Next, for smart charging, which includes battery discharging, a multi-stage decision-making approach with two-round interaction is proposed. Real-time interaction provides owners with an appropriate scheme for contributing to DR, while avoiding the inconvenience of pre-signed long-term contracts. A new stochastic model predicts future PEV arrivals and their energy demand through a combination of an artificial neural network (ANN) and a Markov chain. A new method is proposed for promoting collaboration of PEVs and photovoltaic (PV) panels. This technique is based on a determination of the ways in which smart charging can support simultaneous efficient energy delivery and phase-unbalance mitigation in a three-phase LV system. Simulation results derived from 38-bus and 123-bus distribution test systems have verified the efficacy of the proposed methods. Through case-study comparisons, the inefficiency of conventional charging regimes has been confirmed and the effectiveness of real-time interactions with vehicle owners through DR has been demonstrated. The most obvious finding to emerge from this study is that the use of a scoring-based (SCR) solution facilitates the ability of an aggregator to address urgent PEV energy demands, especially in large parking lots characterized by high levels of hourly vehicle transactions. The results of this study also indicate that significantly greater energy efficiency could be achieved through the discharging of PEV batteries when PEV grid penetration is high.

ICT for Electric Vehicle Integration with the Smart Grid

ICT for Electric Vehicle Integration with the Smart Grid PDF

Author: Nand Kishor

Publisher: Transportation

Published: 2020

Total Pages: 0

ISBN-13: 9781785617621

DOWNLOAD EBOOK →

This book provides a basis for full integration of electric vehicles into the smart grid, through the use of ICT tools. It looks at transport and energy system modelling, simulation and optimisation processes; vehicle on-line optimal control, estimation and prediction; energy system strategic planning; and services such as smart charging.