Natural Resistance Mechanisms of Plants to Viruses

Natural Resistance Mechanisms of Plants to Viruses PDF

Author: Gad Loebenstein

Publisher: Springer Science & Business Media

Published: 2007-05-26

Total Pages: 547

ISBN-13: 1402037805

DOWNLOAD EBOOK →

This book is a first attempt to link well-known plant resistance phenomena with emerging concepts in molecular biology. Resistance phenomena such as the local lesion response, induced resistance, "green islands" and resistance in various crop plants are linked with new information on gene-silencing mechanisms, gene silencing suppressors, movement proteins and plasmodesmatal gating, downstream signalling components, and more.

Plant Resistance to Viruses

Plant Resistance to Viruses PDF

Author: David Evered

Publisher: John Wiley & Sons

Published: 2008-04-30

Total Pages: 226

ISBN-13: 0470513578

DOWNLOAD EBOOK →

Concern about the environmental consequences of the widespread use of pesticides has increased, and evidence of pesticide-resistant virus vectors have continued to emerge. This volume presents a timely survey of the mechanisms of plant resistance and examines current developments in breeding for resistance, with particular emphasis on advances in genetic engineering which allow for the incorporation of viral genetic material into plants. Discusses the mechanisms of innate resistance in strains of tobacco, tomato, and cowpea; various aspects of induced resistance, including the characterization and roles of the pathogenesis-related proteins; antiviral substances and their comparison with interferon; and cross-protection between plant virus strains. Also presents several papers which evaluate the status of genetic engineering as it relates to breeding resistant plants. Among these are discussions of the potential use of plant viruses as gene vectors, gene coding for viral coat protein, satellite RNA, and antisense RNA, and practical issues such as the durability of resistant crop plants in the field.

Plant Viruses: From Ecology to Control

Plant Viruses: From Ecology to Control PDF

Author: Jesús Navas Castillo

Publisher:

Published: 2021

Total Pages: 293

ISBN-13: 9783036523798

DOWNLOAD EBOOK →

Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones--available for many plant viruses--has been used for identification of viral determinants involved in virus-host and virus-vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus-plant-vector combinations. In most cases, the diverse outcomes resulting from virus-virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus-plant host interactions, virus-vector interactions, virus-virus interactions, and control strategies. This issue contains some of the best current research in plant virology.

Plant Virology Protocols

Plant Virology Protocols PDF

Author: Gary D. Foster

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 557

ISBN-13: 1592595669

DOWNLOAD EBOOK →

The aim of Plant Virology Protocols is to provide a source of infor- tion to guide the reader through the wide range of methods involved in gen- ating transgenic plants that are resistant to plant viruses. To this end, we have commissioned a wide-ranging list of chapters that will cover the methods required for: plant virus isolation; RNA extraction; cloning coat p- tein genes; introduction of the coat protein gene into the plant genome; and testing transgenic plants for resistance. The book then moves on to treatments of the mechanisms of resistance, the problems encountered with field testing, and key ethical issues surrounding transgenic technology. Although Plant Virology Protocols deals with the cloning and expression of the coat protein gene, the techniques described can be equally applied to other viral genes and nucleotide sequences, many of which have also been shown to afford protection when introduced into plants. The coat protein has, however, been the most widely applied, and as such has been selected to illustrate the techniques involved. Plant Virology Protocols has been divided into six major sections, c- taining 55 chapters in total.

100 Years of Virology

100 Years of Virology PDF

Author: Charles H. Calisher

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 222

ISBN-13: 3709164257

DOWNLOAD EBOOK →

One hundred years ago, when Martinus W. Beijerinck in Delft and Friedrich Loeffler on Riems Island discovered a new class of infectious agents in plants and animals, a new discipline was born. This book, a compilation of papers written by well-recognized scientists, gives an impression of the early days, the pioneer period and the current state of virology. Recent developments and future perspectives of this discipline are sketched against a historic background. With contributions by A. Alcami, D. Baulcombe, F. Brown, L. W. Enquist, H. Feldmann, A. Garcia-Sastre, D. Griffiths, M. C. Horzinek, A. van Kammen, H.-D. Klenk, F. A. Murphy, T. Muster, R. O'Neill, P. Palese, C. Patience, R. Rott, H.- P. Schmiedebach, S. Schneider-Schaulies, G. L. Smith, J. A. Symons, Y. Takeuchi, V. ter Meulen, P. J. W. Venables, V. E. Volchkov, V. A. Volchkova, R. A. Weiss, W. Wittmann, H. Zheng.

Virus-Resistant Transgenic Plants: Potential Ecological Impact

Virus-Resistant Transgenic Plants: Potential Ecological Impact PDF

Author: Mark Tepfer

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 152

ISBN-13: 3662035065

DOWNLOAD EBOOK →

The introduction of novel genes into plants by genetic transformation holds great promise for plant breeding, and many crop species have been rendered virus-resistant by expression of viral sequences. However, it is essential to also evaluate the potential risks associated with this new technology. Among the types of genetically modified plants that could represent potential ecological risks, ones expressing viral sequences pose questions of particular interest. In this volume special attention is given to recombination in plants expressing sequences of RNA or DNA viruses, heterologous encapsidation or other forms of complementation in plants expressing coat protein genes, potential deleterious effects of satellite RNAs associated with cucumber mosaic virus, and sexual transmission of virus resistance genes to potentially weedy relatives.

Mechanisms of Resistance to Plant Diseases

Mechanisms of Resistance to Plant Diseases PDF

Author: R.S. Fraser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 473

ISBN-13: 9400951450

DOWNLOAD EBOOK →

Plant resistance to pathogens is one of the most important strategies of disease control. Knowledge of resistance mechanisms, and of how to exploit them, has made a significant contribution to agricultural productivity. However, the continuous evolution of new variants of pathogen, ana additional control problems posed by new crops and agricultural methods, creates a need for a corresponding increase in our understanding of resistance and ability to utilize it. The study of resistance mechanisms also has attractions from a purely academic point of view. First there is the breadth of the problem, which can be approached at the genetical, molecular, cellular, whole plant or population lev~ls. Often there is the possibility of productive exchange of ideas between different disciplines. Then there is the fact that despite recent advances, many of the mechanisms involved have still to be fully elucidated. Finally, and compared with workers in other areas of biology, the student of resistance is twice blessed in having as his subject the interaction of two or more organisms, with the intriguing problems of recognition, specificity and co-evolution which this raises.

Plant Virology

Plant Virology PDF

Author: Roger Hull

Publisher: Academic Press

Published: 2013-10-31

Total Pages: 1119

ISBN-13: 0123848725

DOWNLOAD EBOOK →

The seminal text Plant Virology is now in its fifth edition. It has been 10 years since the publication of the fourth edition, during which there has been an explosion of conceptual and factual advances. The fifth edition of Plant Virology updates and revises many details of the previous edition while retaining the important earlier results that constitute the field's conceptual foundation. Revamped art, along with fully updated references and increased focus on molecular biology, transgenic resistance, aphid transmission, and new, cutting-edge topics, bring the volume up to date and maintain its value as an essential reference for researchers and students in the field. Thumbnail sketches of each genera and family groups Genome maps of all genera for which they are known Genetic engineered resistance strategies for virus disease control Latest understanding of virus interactions with plants, including gene silencing Interactions between viruses and insect, fungal, and nematode vectors Contains over 300 full-color illustrations

Plant Pathogen Resistance Biotechnology

Plant Pathogen Resistance Biotechnology PDF

Author: David B. Collinge

Publisher: John Wiley & Sons

Published: 2016-06-13

Total Pages: 453

ISBN-13: 1118867769

DOWNLOAD EBOOK →

Plant pathogens and diseases are among the most significant challenges to survival that plants face. Disease outbreaks caused by microbial or viral pathogens can decimate crop yields and have severe effects on global food supply. Understanding the molecular mechanisms underlying plant immune response and applying this understanding to develop biotechnological tools to enhance plant defense against pathogens has great potential for moderating the impact of plant disease outbreaks. Plant Pathogen Resistance Biotechnology’s main focus is an in depth survey of the biological strategies being used to create transgenic disease resistant plants for sustainable plant resistance Plant Pathogen Resistance Biotechnology is divided into four sections. The first section covers biological mechanisms underpinning disease resistance in plants, while the second highlights case studies of important pathogen-crop groups and then considers why the application of important pathogen-crop groups, transgenic-based strategies designed to selectively target pathogens could benefit crop production. The third section provides information on the status of transgenic crops around the world, and finally the last part explores high-tech alternatives to genetic engineering for developing disease resistant traits in plants. Edited and authored by leaders in the field, Plant Pathogen Resistance Biotechnology will be an invaluable resource to those studying or researching plant biotechnology, plant pathology, plant biology, plant and crop genetics, in addition to crop science.

Disease Resistance in Plants

Disease Resistance in Plants PDF

Author: J.E. Vanderplank

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 209

ISBN-13: 0323161987

DOWNLOAD EBOOK →

Disease Resistance in Plants, Second Edition, looks at genetic, epidemiologic, biochemical, and biometric principles for developing new cultivars possessing genetic resistance to diseases. It examines the nature of disease resistance and resistance genes, and it highlights the importance of stabilizing selection, sugar, biotrophy, and necrotrophy to obtain the greatest possible yields. Organized into 17 chapters, this volume begins with an overview of disease resistance in plants and the ways to develop disease-resistant variants. It then discusses unspecific resistance; the resistance gene paradox; susceptibility and resistance within narrow host taxa; phenotypic variation and gene numbers in host plants; discontinuous variation and cytoplasmic inheritance; and experimental difficulties in partitioning variance. The reader is also introduced to epistasis and the structure of virulence in pathogens; the notion of physiological race; how the pathogen adapts to the host; mutation in the pathogen from avirulence to virulence; horizontal and vertical resistance to disease and its epidemiological effects; and the link between protein polymorphism and vertical resistance. In addition, the book discusses genes for susceptibility in the host versus genes for avirulence (or virulence) in the pathogen; sink-induced loss of resistance; high-sugar disease processes and biotrophy; slow rusting of cereal crops; plant resistance against endemic disease; and the accumulation of resistance genes in heterogeneous host populations. This book will be useful to plant pathologists and plant breeders.