The Physiology of Crop Yield

The Physiology of Crop Yield PDF

Author: Robert K. M. Hay

Publisher: Wiley-Blackwell

Published: 2006-11-17

Total Pages: 330

ISBN-13: 1405108592

DOWNLOAD EBOOK →

First published in 1989, Physiology of Crop Yield was the first student textbook to digest and assimilate the many advances in crop physiology, within a framework of resource capture and use. Retaining the central core of the first edition, this long-awaited second edition draws on recent developments in areas such as phenology, canopy dynamics and crop modelling, and the concepts of sustainable crop production. A broad perspective is developed, from the gene through the plant and crop to the ecosystem, covering: Advances in molecular biology relating to crop science Limitation of crop yield by the supply of water or nitrogen Global climate change and its impact on crop modelling Physiological aspects of crop quality A wider range of species, with emphasis on wheat, maize and soybean This book will be a valuable tool for advanced undergraduate and postgraduate students of agricultural science, plant science, applied ecology and environmental science. It will be an essential addition to all libraries in universities and relevant research establishments.

Physiology of Crop Production

Physiology of Crop Production PDF

Author: N.K. Fageria

Publisher: CRC Press

Published: 2006-05-16

Total Pages: 366

ISBN-13: 9781560222897

DOWNLOAD EBOOK →

This single volume explores the theoretical and the practical aspects of crop physiological processes around the world The marked decrease over the past century in the land available for crop production has brought about mounting pressure to increase crop yields, especially in developing nations. Physiology of Crop Production provides cutting-edge research and data for complete coverage of the physiology of crop production, all in one source, right at your fingertips. This valuable reference gives the extensive in-depth information soil and crop professionals need to maximize crop productivity anywhere the world. Leading soil and plant scientists and researchers clearly explain theory, practical applications, and the latest advances in the field. Crop physiology is a vital science needed to understand crop growth and development to facilitate increases of plant yield. Physiology of Crop Production presents a wide range of information and references from varying regions of the world to make the book as complete and broadly focused as possible. Discussion in each chapter is supported by experimental data to make this book a superb resource that will be used again and again. Chapter topics include plant and root architecture, growth and yield components, photosynthesis, source-sink relationship, water use efficiency, crop yield relative to water stress, and active and passive ion transport. Several figures and tables accompany the extensive referencing to provide a detailed, in-depth look at every facet of crop production. Physiology of Crop Production explores management strategies for: ideal plant architecture maximizing root systems ideal yield components maximizing photosynthesis maximizing source-sink relationship sequestration of carbon dioxide reducing the effects of drought improving N, P, K, Ca, Mg, and S nutrition improving micronutrient uptake Physiology of Crop Production is an essential desktop resource for plant physiologists, soil and crop scientists, breeders, agronomists, agronomy administrators in agro-industry, educators, and upper-level undergraduate and graduate students.

Crop Physiology Case Histories for Major Crops

Crop Physiology Case Histories for Major Crops PDF

Author: Victor Sadras

Publisher: Academic Press

Published: 2020-12-05

Total Pages: 780

ISBN-13: 0128191953

DOWNLOAD EBOOK →

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. A crop-based approach to crop physiology in a G x E x M context Captures the perspectives of global experts on 22 crops

Crop Yield

Crop Yield PDF

Author: Donald L. Smith

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 364258554X

DOWNLOAD EBOOK →

This book has been prepared for those seeking a better understanding of the functioning of crop plants, particularly the processes that lead to the genera tion of products valued by human beings. The contributors, who are among the world's foremost experts on the important crops upon which humanity depends for food or fibre, address the relevant processes for their specific crop. Currently, the world population is continuing to increase. It is projected to plateau around the middle of the next century, and while there is considerable controversy regarding the population level when this plateau is achieved, most estimates are in the area of 10 000 000 000. At present, there are about 800000000 people in the world who do not have secure access to food. Over the last 50 years various aspects of agricultural research have been combined to increase the output of world crops approximately 2.5-fold. Given the need to feed the increasing population, and to provide better access, it is predicted that during the next 50 years the agricultural research community must repeat this achievement.