Characterizing Space Plasmas

Characterizing Space Plasmas PDF

Author: George K. Parks

Publisher: Springer

Published: 2018-07-26

Total Pages: 332

ISBN-13: 3319900412

DOWNLOAD EBOOK →

This didactic book uses a data-driven approach to connect measurements made by plasma instruments to the real world. This approach makes full use of the instruments’ capability and examines the data at the most detailed level an experiment can provide. Students using this approach will learn what instruments can measure, and working with real-world data will pave their way to models consistent with these observations. While conceived as a teaching tool, the book contains a considerable amount of new information. It emphasizes recent results, such as particle measurements made from the Cluster ion experiment, explores the consequences of new discoveries, and evaluates new trends or techniques in the field. At the same time, the author ensures that the physical concepts used to interpret the data are general and widely applicable. The topics included help readers understand basic problems fundamental to space plasma physics. Some are appearing for the first time in a space physics textbook. Others present different perspectives and interpretations of old problems and models that were previously considered incontestable. This book is essential reading for graduate students in space plasma physics, and a useful reference for the broader astrophysics community.

Physics of Space Storms

Physics of Space Storms PDF

Author: Hannu Koskinen

Publisher: Springer Science & Business Media

Published: 2011-01-21

Total Pages: 431

ISBN-13: 3642003192

DOWNLOAD EBOOK →

This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.

Physics of Space Plasma Activity

Physics of Space Plasma Activity PDF

Author: Karl Schindler

Publisher: Cambridge University Press

Published: 2010-04-22

Total Pages: 0

ISBN-13: 9780521142366

DOWNLOAD EBOOK →

Space plasma is so hot that the atoms break up into charged particles which then become trapped and stored in magnetic fields. When critical conditions are reached the magnetic field breaks up, releasing a large amount of energy and causing dramatic phenomena. The largest space plasma activity events observed in the solar system occur on the Sun, when coronal mass ejections expel several billion tons of plasma mass into space. This book provides a coherent and detailed treatment of the physical background of large plasma eruptions in space. It provides the background necessary for dealing with space plasma activity, and allows the reader to reach a deeper understanding of this fascinating natural event. The book employs both fluid and kinetic models, and discusses the applications to magnetospheric and solar activity. This will form an interesting reference for graduate students and academic researchers in the fields of astrophysics and plasma physics.

Space Physics

Space Physics PDF

Author: May-Britt Kallenrode

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 487

ISBN-13: 3662099594

DOWNLOAD EBOOK →

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.

Basic Space Plasma Physics (Third Edition)

Basic Space Plasma Physics (Third Edition) PDF

Author: Wolfgang Baumjohann

Publisher: World Scientific

Published: 2022-02-11

Total Pages: 528

ISBN-13: 9811254079

DOWNLOAD EBOOK →

This textbook describes Earth's plasma environment from single particle motion in electromagnetic fields, with applications to Earth's magnetosphere, up to plasma wave generation and wave-particle interaction. The origin and effects of collisions and conductivities are discussed in detail, as is the formation of the ionosphere, the origin of magnetospheric convection and magnetospheric dynamics in solar wind-magnetosphere coupling, the evolution of magnetospheric storms, auroral substorms, and auroral phenomena of various kinds.The second half of the book presents the theoretical foundation of space plasma physics, from kinetic theory of plasma through the formation of moment equations and derivation of magnetohydrodynamic theory of plasmas. The validity of this theory is elucidated, and two-fluid theory is presented in more detail. This is followed by a brief analysis of fluid boundaries, with Earth's magnetopause and bow shock as examples. The main emphasis is on the presentation of fluid and kinetic wave theory, deriving the relevant wave modes in a high temperature space plasma. Plasma instability is the most important topic in all applications and is discussed separately, including a section on thermal fluctuations. These theories are applied to the most interesting problems in space plasma physics, collisionless reconnection and collisionless shock waves with references provided. The Appendix includes the most recent developments in the theory of statistical particle distributions in space plasma, the Kappa distribution, etc, also including a section on space plasma turbulence and emphasizing on new observational developments with a dimensional derivation of the Kolmogorov spectrum, which might be instructive for the student who may worry about its origin.The book ends with a section on space climatology, space meteorology and space weather, a new application field in space plasma physics that is of vital interest when considering the possible hazards to civilization from space.

Physics Of Space Plasmas

Physics Of Space Plasmas PDF

Author: George K Parks

Publisher: CRC Press

Published: 2019-08-21

Total Pages: 552

ISBN-13: 1000231593

DOWNLOAD EBOOK →

This textbook was developed to provide seniors and first-year graduate students in physical sciences with a general knowledge of electrodynamic phenomena in space. Since the launch of the first unmanned satellite in 1957, experiments have been performed to study the behavior of electromagnetic fields and charged particles. There is now a considerable amount of data on hand, and many articles, including excellent review articles, have been written for the specialists. However, for students, new researchers, and non-specialists, a need still exists for a book that integrates these observations in a coherent way. This book is an attempt to meet that need by using the theory of classical electrodynamics to unify space observations. The contents of this book are based on classroom notes developed for an introductory space physics course that the author has taught for many years at the University of Washington. Students taking the course normally have had an undergraduate course in electricity and magnetism but they come with very little knowledge about space.

Space Plasma Physics

Space Plasma Physics PDF

Author: Akira Hasegawa

Publisher: Springer

Published: 1989-03-23

Total Pages: 200

ISBN-13: 9783540504115

DOWNLOAD EBOOK →

During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discoveries, such as chaos and strange attractors, localized nonlinear vortices and solitons. As space physics approaches the new era, there should be no reason why space scientists cannot contribute, in a similar manner, to fundamental discoveries in plasma physics in the course of understanding dynamical processes in space plasmas.

Introduction to Plasma Physics

Introduction to Plasma Physics PDF

Author: Donald A. Gurnett

Publisher: Cambridge University Press

Published: 2017-02-20

Total Pages: 535

ISBN-13: 1107027373

DOWNLOAD EBOOK →

Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.

Physics of Space Plasmas

Physics of Space Plasmas PDF

Author: George K. Parks

Publisher: Westview Press

Published: 2004

Total Pages: 597

ISBN-13: 9780813341309

DOWNLOAD EBOOK →

This edition includes new observations, new data and expands the theory of kinetic physics.

An Introduction to Plasma Physics and Its Space Applications, Volume 1

An Introduction to Plasma Physics and Its Space Applications, Volume 1 PDF

Author: Luis Conde

Publisher: Morgan & Claypool Publishers

Published: 2018-12-11

Total Pages: 130

ISBN-13: 1643271741

DOWNLOAD EBOOK →

The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.