Physicochemical Interactions of Engineered Nanoparticles and Plants

Physicochemical Interactions of Engineered Nanoparticles and Plants PDF

Author: Guadalupe De La Rosa

Publisher: Elsevier

Published: 2022-10-12

Total Pages: 348

ISBN-13: 0323906788

DOWNLOAD EBOOK →

Physicochemical Interactions of Engineered Nanoparticles and Plants: A Systemic Approach, Volume Four in the Nanomaterial-Plant Interactions series, presents foundational information on how ENMs interact with the surrounding environment. Key themes include source, fate and transport of ENMs in the environment, biophysicochemical transformations of ENMs, and chemical reactions and mechanisms of ENMs transport in plants. This book is an essential read for any scientist or researcher looking to understand the molecular interactions between ENMs and Plants. Engineered nanomaterials (ENMs) reach plant ecosystems through intentional or unintentional pathways. In any case, after release, these materials may be transformed in the environment by physical, chemical and biochemical processes. Once in contact with plant systems, biotransformation may still occur, affecting or stimulating plant metabolism. Since plants are the producers to the food chain, it is of paramount importance to understand these mechanisms at the molecular level. Presents data, predictions and modeling regarding the presence of ENMs in air, water and soil Explains, at the molecular level, the biogeochemical cycle of ENMs before plant exposure Focuses on the reactions and mechanisms of ENMs and plants

Engineered Nanoparticles and the Environment

Engineered Nanoparticles and the Environment PDF

Author: Baoshan Xing

Publisher: John Wiley & Sons

Published: 2016-10-10

Total Pages: 506

ISBN-13: 1119275822

DOWNLOAD EBOOK →

Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies

Phytotoxicity of Nanoparticles

Phytotoxicity of Nanoparticles PDF

Author: Mohammad Faisal

Publisher: Springer

Published: 2018-06-28

Total Pages: 407

ISBN-13: 3319767089

DOWNLOAD EBOOK →

This book provides relevant findings on nanoparticles’ toxicity, their uptake, translocation and mechanisms of interaction with plants at cellular and sub-cellular level. The small size and large specific surface area of nanoparticles endow them with high chemical reactivity and intrinsic toxicity. Such unique physicochemical properties draw global attention of scientists to study potential risks and adverse effects of nanoparticles in the environment. Their toxicity has pronounced effects and consequences for plants and ultimately the whole ecosystem. Plants growing in nanomaterials-polluted sites may exhibit altered metabolism, growth reduction, and lower biomass production. Nanoparticles can adhere to plant roots and exert physicochemical toxicity and subsequently cell death in plants. On the other hand, plants have developed various defense mechanisms against this induced toxicity. This books discusses recent findings as well as several unresolved issues and challenges regarding the interaction and biological effects of nanoparticles. Only detailed studies of these processes and mechanisms will allow researchers to understand the complex plant-nanomaterial interactions.

Interfacial Reactions of Natural and Engineered Nanoparticles and Colloids in Water and Wastewater Treatment Systems

Interfacial Reactions of Natural and Engineered Nanoparticles and Colloids in Water and Wastewater Treatment Systems PDF

Author: Jessica R. Ray

Publisher:

Published: 2015

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK →

Global water demands continue to rise, especially in lieu of population growth and consequential economic and energy needs. Furthermore, global climate change has placed additional stresses on the future availability of freshwater. As a result, it is now becoming crucial to replenish water sources via drinking water and wastewater treatment. Due to advancements in nanotechnology, engineered and manufactured nanoparticles are increasingly entering water and wastewater treatment plants. In addition, naturally occurring nanoparticles can also form or exist in drinking water and wastewater treatment facilities. Therefore, to design better water treatment systems, it is important to understand how these nanoparticles will affect water chemistry as well as the efficacy of drinking water and wastewater treatment processes. This work consists of environmental perspectives of natural and engineered nanoparticle interactions in two complex aqueous environments: wastewater treatment and drinking water treatment systems. First, impacts of natural and engineered nanoparticles on wastewater treatment process efficacy were investigated in the following three systems: (1) heterogeneous iron (hydr)oxide formation on organic coated substrates, (2) homogeneous iron (hydr)oxide formation, and (3) mixed homo/heterogeneous nucleation of iron (hydr)oxide on CeO2 engineered nanoparticles. In System (1), heterogeneous precipitation of naturally occurring iron (hydr)oxide nanoparticles in model wastewater systems was investigated. Quartz, polyaspartate and alginate coated substrates were used to model abundant mineral substrates found downstream of wastewater treatment, anionic polyelectrolytes used in coagulation processes, and extracellular materials in biofilm during biochemical treatment, respectively. For the first time, iron (hydr)oxide nanoparticle formation on polymeric substrates was monitored in situ. Results indicated that substrate surface hydrophilicity was more dominant than electrostatic interactions in predicting nucleation. In System (2), homogeneous iron (hydr)oxide nucleation and phase transformation was then investigated as a function of synthesis conditions. Iron (hydr)oxides are highly reactive and effective sorbents for wastewater contaminants and formation conditions can determine their sorption efficacy. Therefore, in this study, the Fe(III) hydrolysis kinetics and cooling rates were altered to investigate the simultaneous formation of mixtures of hematite and 6-line ferrihydrite iron (hydr)oxide nanoparticles. Complementary in situ and ex situ analytical techniques revealed that understanding in situ physicochemical properties can control ex situ nanoparticle characteristics. Also, separate, distinct hematite and 6-line ferrihydrite phases were generated simultaneously and 6-line ferrihydrite removed more As(V), a model wastewater contaminant, compared to hematite. Moreover, iron (hydr)oxides can also form in the presence of engineered nanomaterials in wastewater which can affect contaminant transport downstream as well as wastewater stream chemistry. Therefore, in System (3), iron (hydr)oxide formation on engineered cerium oxide (CeO2) nanoparticles by redox reactions with Fe2+ (a reagent used in advanced oxidation processes in wastewater treatment) and Cr(VI)(aq) (a pre-existing wastewater contaminant) was investigated. The coexistence of Fe2+ and Cr(VI)(aq) were found to greatly promote the colloidal stability and to inhibit the dissolution of CeO2 nanoparticles while promoting the formation of an iron (hydr)oxide surface coating layer via redox reactions at the CeO2 nanoparticle surface. This is more prominent in the presence of Cr(VI)(aq) compared to systems without Cr(VI)(aq) ions. Engineered nanoparticles could act as heterogeneous nucleation sites and adsorption sites when released into the environment, incorporating toxic elements and molecules into a "hybrid" engineered/natural nanoparticle composite. As such, tt is essential to understand surface redox chemistry which nanoparticles could experience during wastewater treatment processes. Second, effects of naturally forming colloids and membrane-surface-modifier nanomaterials on reverse osmosis (RO) drinking water treatment processes were studied. Fouling by calcium carbonate (CaCO3) and calcium sulfate (CaSO4) and other brackish water constituents can clog RO membrane pores and reduce the amount of purified water produced, and as a result, engineered nanomaterials have been used to reduce fouling on membrane surfaces. In this work, two scientific challenges related to colloid interactions during RO were addressed: (4) mineral scaling on polyethylene glycol (PEG)-modified RO membranes, and (5) mineral scaling, organic fouling and biofouling on multifunctional membrane surfaces. In System (4), hydrophilic, polyamide RO membrane surface modification using grafted PEG was studied as a remedy to reduce fouling from mineral scalants (i.e., CaCO3 and CaSO4) and humic acid which exists in high concentrations in brackish water. In batch systems without humic acid, the PEG-grafted membranes were successful in reducing mineral scale formation at the membrane surface; however, in the presence of humic acid, a specific interaction between SO4, PEG, and humic acid resulted in promoted CaSO4 scaling at the membrane surface. Findings of this work indicate that multiple RO feed water constituents should be considered when determining the efficacy of membrane surface modifications. In System (5), to simultaneously combat colloidal fouling from CaCO3 and CaSO4, organic fouling (e.g., humic acid) and biofouling (e.g., Escherichia coli), a multifunctional membrane was fabricated. Graphene oxide (GO) nanosheets, gold nanostars (AuNS), and PEG were combined on polyamide RO membrane surfaces and demonstrated to significantly reduce fouling from the three major fouling classes. Bacterial inactivation at the RO membrane surface was achieved by irradiating the membrane with an 808 nm laser activating the photothermal properties of the Au nanostars. Our newly developed novel, multifunctional membrane surface was therefore able to significantly reduce mineral scaling, organic fouling, and biofouling during RO without additional chemical or thermal treatments. The findings from this systematic, mechanistic study investigating natural and engineered nanoparticle interactions in complex, dynamic systems can help improve the understanding of the fate, transport, and transformations of nanoparticles in water and wastewater treatment processes in response to increasing quantities and applications of nanoparticles in aquatic systems. Furthermore, through our unique engineered design, we have provided promising solutions for drastically improving water treatment processes in complex feed solutions.

Sources, Mechanisms and Toxicity of Nanomaterials in Plants

Sources, Mechanisms and Toxicity of Nanomaterials in Plants PDF

Author: Jose Peralta-Videa

Publisher: Elsevier

Published: 2021-08-01

Total Pages: 450

ISBN-13: 0128230096

DOWNLOAD EBOOK →

Plants encounter a wide range of environmental challenges during their life cycle, among which nanoparticle toxicity is a common form of abiotic stress. Nanoparticles can adversely affect various stages of the plant life cycle, such as seed germination, root and shoot growth, chloroplasts ultrastructure and photosynthesis, nutrients assimilation, carbohydrates metabolism, and plant hormonal status, which collectively result in reduced plant yields. Sources, Mechanisms and Toxicity of Nanomaterials in Plants discusses the plant physiology and chemistry involved when plants encounter nanoparticles. Key topics include effects of nanoparticles on photosynthetic responses, regulation of nanoparticle toxicity by nitric oxide, and regulation of nanoparticle toxicity by exogenous application of primary and secondary metabolites. This is the first volume in the new Nanomaterials-Plant Interactions series and is an essential read to all researchers and scientists interested in plant physiology and chemistry, agronomy, nanotechnology and environmental science. Analyses how nanoparticle toxicity impacts the plant life cycle Includes the latest information on the range of coping mechanisms plants use to combat nanotoxicity Reviews protectants, such as endogenous signaling molecules, and their role in protecting the plant from nanotoxicity

Engineered Nanoparticles for Agricultural and Environmental Prospective

Engineered Nanoparticles for Agricultural and Environmental Prospective PDF

Author: Wuttipong Mahakham

Publisher:

Published: 2017

Total Pages: 229

ISBN-13:

DOWNLOAD EBOOK →

The advanced development of nanotechnology opens up potential novel applications in agriculture. Engineered nanoparticles (NPs), one of the building blocks of nanotechnology, are tiny materials having size ranges from 1 to 100 nm with unique physical and chemical properties. Presently, large amounts of NPs are applied to crop plants as novel delivery tools for fertilizers, herbicides, and pesticides. However, nanotechnology research in agriculture is still at an early stage and evolving quickly. Thus, the interaction between NPs and plants, both beneficial and phytotoxicity effects, has to be investigated in details before wide applications in agriculture. To enhance sustainable nanoagriculture, the goals of this research are to (i) develop ecofriendly methods for synthesizing NPs and apply them as nanopriming agents for stimulating seed germination of model crop plants and (ii) assess the environmental effects of NPs when adding as nanofertilizer on model crop plants at physiological and molecular levels. In agri-seed industry, there is a need to increase seed germination and seedling vigour by priming methods. In this study, novel technique called nanopriming has been developed for activating seed germination. Two metallic NPs, gold (Au) and silver (Ag) NPs have been chosen as trial agents of nanopriming because both NPs are widely used in industry. AuNPs and AgNPs were successfully synthesized using the aqueous extracts from galangal rhizhomes and kaffir lime leaves, which were based on principle of green chemistry to reduce the use of toxic and hazardous chemicals and considered as ecofriendly, simple and inexpensive methods. Various materials characterization techniques (TEM, SAED, FTIR, XRD) showed the successful formation of AuNPs and AgNPs, which were capped with phytochemicals present in the plant extracts. The synthesized AuNPs and AgNPs were applied as nanopriming agents at very low concentrations (5-15 mg L-1 for AuNPs and 5-10 mg L-1 for AgNPs) for activating aged seeds of maize and rice plants, respectively. Results indicated that nanopriming can significantly increase germination percentage and seedling vigours of the two crop plants compared to unprimed and hydroprimed seeds. Moreover, nanopriming can enhance seed water uptake and starch metabolism of the treated seeds. In case of AgNPs, nanopriming can activate the expression of aquaporin genes involving water uptake. As evidenced by electron spin resonance (ESR) analysis, AgNPs were able to mediate the generation of hydroxyl radicals (•OH). Thus, mechanism behind this beneficial effect could be explained based on oxidative window concepts that these NPs are able to generate reactive oxygen species (ROS), which are beneficial as cell signaling messenger for activating seed germination. This research is the first attempt to explain the mechanism behind nanopriming induced seed germination using ROS concept. As the application of NPs as nanopriming used only small concentrations, root and shoot parts of seedlings derived from nanopriming did not uptake the NPs, suggesting the advantage of nanopriming technique in reducing the dispersal of NPs into plants and environments. Multi-walled carbon nanotubes (MWCNTs), which are widely used in engineering, medicine and industry, were applied as nanofertilizers for assessing whether MWCNTs could be beneficial or have negative effects on maize plants. In trial experiment using Petri dish assay, results indicated that MWCNTs treatments (100-1000 mg L-1) did not show toxic effects on maize plants. In soil culture experiment, MWCNTs were supplied as nanofertilizers into soil at concentrations of 100, 250, 500 and 1000 mg kg-1 soil for investigating the long-term effects of MWCNTs on maize plants throughout their life cycle. The present results demonstrated that MWCNTs showed positive effects on maize plants by promoting rapid growth and development, early flowering, biomass and grain yield. Besides, MWCNTs can enhance aquaporin genes, which involved in water uptake compared to control plants (without nanofertilizers). Moreover, MWCNTs-treated plants had higher photosynthetic capacity and relative water content as compared to the controls. MWCNTs can also improve antioxidant defense system and delay the senescence of leaves of the treated plants. Interestingly, ICP-OES analysis showed that some nutritional elements in leaves and kernels of MWCNTs-treated plants were higher than control plants, suggesting that MWCNTs could modify nutrient uptake by plants. Synchrotron-based X-ray fluorescence analysis confirmed that MWCNTs could change distribution pattern of some nutritional elements in kernels. These results indicated that application of MWCNTs as nanofertilizer did not promote only plant growth and development, but also enhance photosynthetic capacity, antioxidant defense, and nutritional element uptake. Mechanism behind this positive effect could be the fact that MWCNTs help facilitating plant water uptake and higher water uptake could enhance leaf photosynthetic capacity and nutrient uptake and translocation. This is the first reports on the study of long-term effects of MWCNTs as nanofertilizers on maize plants in soil culture system throughout whole plant life cycle. Key new findings from this research include (i) NPs are able to generate ROS and the generated ROS could help loosening cell walls or act as signal messengers for seed germination and (ii) MWCNTs have the potential to be used as nanofertilizer for promoting plant growth and yields and enhancing the uptake of water and nutrients in crop plants.

Exposure to Engineered Nanomaterials in the Environment

Exposure to Engineered Nanomaterials in the Environment PDF

Author: Nelson Marmiroli

Publisher: Elsevier

Published: 2019-05-28

Total Pages: 362

ISBN-13: 0128148365

DOWNLOAD EBOOK →

Exposure to Engineered Nanomaterials in the Environment provide a new, holistic framework for testing and evaluating the potential benefits and risks of engineered nanomaterials (ENMs), including their potential socioeconomic impacts, ethical issues and consumers’ expectations and fears. The book covers nanomaterial presence in various environments, agroecosystems and other areas within the human sphere of actions. The book includes sections on (i) Chemical, physical and biological properties, (ii) Presence and diffusion of ENMs in human environments, agriculture, food and drug products, (iii) ENMs as a pillar in biological and medical research, and (iv) Social and regulatory issues emerging from years of application. The book is designed to increase awareness to key end-users and stakeholders, including food producers and processors, industry, representatives of society and consumers, and those looking to implement an accurate and effective risk analysis procedure that promotes the sustainable use of nanotechnology. Assesses both the positive and negative impacts of engineered nanomaterials in the environment Shows how engineered nanomaterials are used in agricultural environments, food products, drugs and cosmetics Discusses the unique properties of a range of engineered nanomaterials that lead to their environmental effects

Engineered Nanoparticles

Engineered Nanoparticles PDF

Author: Ashok K. Singh

Publisher: Academic Press

Published: 2015-11-24

Total Pages: 556

ISBN-13: 012801492X

DOWNLOAD EBOOK →

Engineered Nanoparticles: Structure, Properties and Mechanisms of Toxicity is an indispensable introduction to engineered nanomaterials (ENM) and their potential adverse effects on human health and the environment. Although research in the area of pharmacology and toxicology of ENM is rapidly advancing, a possible correlation between their physicochemical properties and biomedical properties or toxicity is not yet fully understood. This understanding is essential to develop strategies for the safe applications and handling of ENM. The book comprehensively defines the current understanding of ENM toxicity, first describing these materials and their physicochemical properties, and then discussing the toxicological theory and methodology before finally demonstrating the potential impact of ENM on the environment and human health. It represents an essential reference for students and investigators in toxicology, pharmacology, chemistry, material sciences, medicine, and those in related disciplines who require an introduction to ENM and their potential toxicological effects. Provides state-of-the-art physicochemical descriptions and methodologies for the characterization of engineered nanomaterials (ENM) Describes the potential toxicological effects of ENM and the nanotoxicological mechanisms of action Presents how to apply theory to practice in a public health and risk assessment setting