Physical Models of Cell Motility

Physical Models of Cell Motility PDF

Author: Igor S. Aranson

Publisher: Springer

Published: 2015-12-16

Total Pages: 201

ISBN-13: 3319244485

DOWNLOAD EBOOK →

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and can serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement./div

Cell Movement

Cell Movement PDF

Author: Magdalena Stolarska

Publisher: Springer

Published: 2018-11-22

Total Pages: 301

ISBN-13: 3319968424

DOWNLOAD EBOOK →

This book contains a collection of original research articles and review articles that describe novel mathematical modeling techniques and the application of those techniques to models of cell motility in a variety of contexts. The aim is to highlight some of the recent mathematical work geared at understanding the coordination of intracellular processes involved in the movement of cells. This collection will benefit researchers interested in cell motility as well graduate students taking a topics course in this area.

The Fluid Dynamics of Cell Motility

The Fluid Dynamics of Cell Motility PDF

Author: Eric Lauga

Publisher: Cambridge University Press

Published: 2020-11-05

Total Pages: 391

ISBN-13: 1107174651

DOWNLOAD EBOOK →

A pedagogical review of the mathematical modelling in fluid dynamics necessary to understand the motility of most microorganisms on Earth.

Cell Motility

Cell Motility PDF

Author: Peter Lenz

Publisher: Springer

Published: 2014-11-20

Total Pages: 0

ISBN-13: 9781489989543

DOWNLOAD EBOOK →

A much-needed work that provides an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area. Cell motility is fundamentally important to a number of biological and pathological processes. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found – and this volume is a major stepping-stone along the way.

The Fluid Dynamics of Cell Motility

The Fluid Dynamics of Cell Motility PDF

Author: Eric Lauga

Publisher: Cambridge University Press

Published: 2020-11-05

Total Pages: 392

ISBN-13: 1316805786

DOWNLOAD EBOOK →

Fluid dynamics plays a crucial role in many cellular processes, including the locomotion of cells such as bacteria and spermatozoa. These organisms possess flagella, slender organelles whose time periodic motion in a fluid environment gives rise to motility. Sitting at the intersection of applied mathematics, physics and biology, the fluid dynamics of cell motility is one of the most successful applications of mathematical tools to the understanding of the biological world. Based on courses taught over several years, it details the mathematical modelling necessary to understand cell motility in fluids, covering phenomena ranging from single-cell motion to instabilities in cell populations. Each chapter introduces mathematical models to rationalise experiments, uses physical intuition to interpret mathematical results, highlights the history of the field and discusses notable current research questions. All mathematical derivations are included for students new to the field, and end-of-chapter exercises help consolidate understanding and practise applying the concepts.

Cell Mechanics

Cell Mechanics PDF

Author: Arnaud Chauvière

Publisher: CRC Press

Published: 2010-01-27

Total Pages: 484

ISBN-13: 1420094556

DOWNLOAD EBOOK →

Ubiquitous and fundamental in cell mechanics, multiscale problems can arise in the growth of tumors, embryogenesis, tissue engineering, and more. Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling brings together new insight and research on mechanical, mathematical, physical, and biological approaches for simulating the behavior

Single-Cell-Based Models in Biology and Medicine

Single-Cell-Based Models in Biology and Medicine PDF

Author: Alexander Anderson

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 346

ISBN-13: 376438123X

DOWNLOAD EBOOK →

Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes.

Actin-based Motility

Actin-based Motility PDF

Author: Marie-France Carlier

Publisher: Springer Science & Business Media

Published: 2010-09-23

Total Pages: 434

ISBN-13: 904819301X

DOWNLOAD EBOOK →

Since the discovery of actin by Straub in the 1950’s and the pioneering work of Oosawa on actin self-assembly in helical laments in the 1960’s, many books and conference proceedings have been published. As one of the most essential p- teins in life, essential for movement in organisms rangingfrom bacteria to higher eukaryotes, it is no surprise that actin has fascinated generations of scientists from many different elds. Actin can be considered as a “living treasure” of biology; the kinetics and thermodynamics of self-assembly, the dissipative nature of actin po- merization, the molecular interactions of monomeric and polymerized actin with regulators, the mechanical properties of actin gels, and more recently the force p- ducing motile and morphogenetic processes organized by the actin nanomachine in response to signaling, are all milestones in actin research. Discoveries that directly derive from and provide deeper insight into the fundamental properties of actin are constantly being made, making actin an ever appealing research molecule. At the same time, the explosion in new technologies and techniques in biological sciences has served to attract researchers from an expanding number of disciplines, to study actin. This book presents the latest developments of these new multiscale approaches of force and movement powered by self-assembly processes, with the hope to opening our perspectives on the many areas of actin-based motility research.

Multiscale Modeling of Cancer

Multiscale Modeling of Cancer PDF

Author: Vittorio Cristini

Publisher: Cambridge University Press

Published: 2010-09-09

Total Pages: 299

ISBN-13: 1139491504

DOWNLOAD EBOOK →

Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.

Cell Migrations: Causes and Functions

Cell Migrations: Causes and Functions PDF

Author: Caterina A. M. La Porta

Publisher: Springer Nature

Published: 2019-10-14

Total Pages: 135

ISBN-13: 3030175936

DOWNLOAD EBOOK →

Cell migration plays an important role during development and in many physiological and pathological processes, from wound healing to cancer. This edited volume presents a collection of contributions meant to illustrate the state of the art on this topic from an interdisciplinary perspective. Readers will find a detailed discussion of the properties of individual and collective cell migration, including the associated biochemical regulation and important biophysical and biomechanical aspects. The book includes information on the latest experimental techniques employed to study cell migration, from microfluidics to traction force microscopy, as well as the latest theoretical and computational models used to interpret the experimental data. Finally, the role of cell migration in cancer and in development is also reviewed. The contents of this work should appeal to students and researchers in biology and biophysics who want to get up to date on the latest interdisciplinary development in this broad field of research. The chapters are written in a self-contained form and can also be used as individual articles.