Physical Layer Security Issues in Massive MIMO and GNSS

Physical Layer Security Issues in Massive MIMO and GNSS PDF

Author: Ziya Gülgün

Publisher: Linköping University Electronic Press

Published: 2021-02-10

Total Pages: 30

ISBN-13: 917929698X

DOWNLOAD EBOOK →

Wireless communication technology has evolved rapidly during the last 20 years. Nowadays, there are huge networks providing communication infrastructures to not only people but also to machines, such as unmanned air and ground vehicles, cars, household appliances and so on. There is no doubt that new wireless communication technologies must be developed, that support the data traffic in these emerging, large networks. While developing these technologies, it is also important to investigate the vulnerability of these technologies to different malicious attacks. In particular, spoofing and jamming attacks should be investigated and new countermeasure techniques should be developed. In this context, spoofing refers to the situation in which a receiver identifies falsified signals, that are transmitted by the spoofers, as legitimate or trustable signals. Jamming, on the other hand, refers to the transmission of radio signals that disrupt communications by decreasing the signal-to-interference-and-noise ratio (SINR) on the receiver side. In this thesis, we analyze the effects of spoofing and jamming both on global navigation satellite system (GNSS) and on massive multiple-input multiple-output (MIMO) communications. GNSS is everywhere and used to provide location information. Massive MIMO is one of the cornerstone technologies in 5G. We also propose countermeasure techniques to the studied spoofing and jamming attacks. More specifically, in paper A we analyze the effects of distributed jammers on massive MIMO and answer the following questions: Is massive MIMO more robust to distributed jammers compared with previous generation’s cellular networks? Which jamming attack strategies are the best from the jammer’s perspective, and can the jamming power be spread over space to achieve more harmful attacks? In paper B, we propose a detector for GNSS receivers that is able to detect multiple spoofers without having any prior information about the attack strategy or the number of spoofers in the environment.

Physical Layer Security in Training-based Single-hop/dual-hop Massive MIMO Systems

Physical Layer Security in Training-based Single-hop/dual-hop Massive MIMO Systems PDF

Author: Santosh Timilsina

Publisher:

Published: 2018

Total Pages: 266

ISBN-13:

DOWNLOAD EBOOK →

The broadcast nature of wireless medium has made information security as one of the most important and critical issues in wireless systems. Physical layer security, which is based on information-theoretic secrecy concepts, can be used to secure the wireless channels by exploiting the noisiness and imperfections of the channels. Massive multiple-input multiple-output (MIMO) systems, which are equipped with very large antenna arrays at the base stations, have a great potential to boost the physical layer security by generating the artificial noise (AN) with the exploitation of excess degrees-of-freedom available at the base stations. In this thesis, we investigate physical layer security provisions in the presence of passive/active eavesdroppers for single-hop massive MIMO, dual-hop relay-assisted massive MIMO and underlay spectrum-sharing massive MIMO systems. The performance of the proposed security provisions is investigated by deriving the achievable rates at the user nodes, the information rate leaked into the eavesdroppers, and the achievable secrecy rates. Moreover, the effects of active pilot contamination attacks, imperfect channel state information (CSI) acquisition at the base-stations, and the availability of statistical CSI at the user nodes are quantified. The secrecy rate/performance gap between two AN precoders, namely the random AN precoder and the null-space based AN precoder, is investigated. The performance of hybrid analog/digital precoding is compared with the full-dimensional digital precoding. Furthermore, the physical layer security breaches in underlay spectrum-sharing massive MIMO systems are investigated, and thereby, security provisions are designed/analyzed against active pilot contamination attacks during the channel estimation phase. A power-ratio based active pilot attack detection scheme is investigated, and thereby, the probability of detection is derived. Thereby, the vulnerability of uplink channel estimation based on the pilots transmitted by the user nodes in time division duplexing based massive MIMO systems is revealed, and the fundamental trade-offs among physical layer security provisions, implementation complexity and performance gains are discussed.

Physical Layer Security in Random Cellular Networks

Physical Layer Security in Random Cellular Networks PDF

Author: Hui-Ming Wang

Publisher: Springer

Published: 2016-10-04

Total Pages: 127

ISBN-13: 9811015759

DOWNLOAD EBOOK →

This book investigates key security issues in connection with the physical layer for random wireless cellular networks. It first introduces readers to the fundamentals of information theoretic security in the physical layer. By examining recently introduced security techniques for wireless point-to-point communications, the book proposes new solutions to physical layer security based on stochastic geometric frameworks for random cellular networks. It subsequently elaborates on physical-layer security in multi-tier heterogeneous networks. With the new modeled settings, the authors also verify the security performance with the impact of the full-duplex transceivers. The specific model design presented here offers a valuable point of reference for readers in related areas. In addition, the book highlights promising topics and proposes potential future research directions.

Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation

Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation PDF

Author: Kan Chen

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Widely recognized security vulnerabilities in current wireless radio access technologies undermine the benefits of ubiquitous mobile connectivity. Security strategies typically rely on bit-level cryptographic techniques and associated protocols at various levels of the data processing stack. These solutions have drawbacks that have slowed down the progress of new wireless services. Physical layer security approaches derived from an information theoretic framework have been recently proposed with secret key generation being the primary focus of this dissertation. Previous studies of physical layer secret key generation (PHY-SKG) indicate that a low secret key generation rate (SKGR) is the primary limitation of this approach. To overcome this drawback, we propose novel SKG schemes to increase the SKGR as well as improve the security strength of generated secret keys by exploiting multiple input and multiple output (MIMO), cooperative MIMO (co-op MIMO) networks. Both theoretical and numerical results indicate that relay-based co-op MIMO schemes, traditionally used to enhance LTE-A network throughput and coverage, can also increase SKGR. Based on the proposed SKG schemes, we introduce innovative power allocation strategies to further enhance SKGR. Results indicate that the proposed power allocation scheme can offer 15% to 30% increase in SKGR relative to MIMO/co-op MIMO networks with equal power allocation at low-power region, thereby improving network security. Although co-op MIMO architecture can offer significant improvements in both performance and security, the concept of joint transmission and reception with relay nodes introduce new vulnerabilities. For example, even if the transmitted information is secured, it is difficult but essential to monitor the behavior of relay nodes. Selfish or malicious intentions of relay nodes may manifest as non-cooperation. Therefore, we propose relay node reliability evaluation schemes to measure and monitor the misbehavior of relay nodes. Using a power-sensing based reliability evaluation scheme, we attempt to detect selfish nodes thereby measuring the level of non-cooperation. An overall node reliability evaluation, which can be used as a guide for mobile users interested in collaboration with relay nodes, is performed at the basestation. For malicious behavior, we propose a network tomography technique to arrive at node reliability metrics. We estimate the delay distribution of each internal link within a co-op MIMO framework and use this estimate as an indicator of reliability. The effectiveness of the proposed node reliability evaluations are demonstrated via both theoretical analysis and simulations results. The proposed PHY-SKG strategies used in conjunction with node reliability evaluation schemes represent a novel cross-layer approach to enhance security of cooperative networks.

Physical-Layer Security

Physical-Layer Security PDF

Author: Matthieu Bloch

Publisher: Cambridge University Press

Published: 2011-09-22

Total Pages: 347

ISBN-13: 1139496298

DOWNLOAD EBOOK →

This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-to-end architectures, it provides essential practical tools that enable graduate students, industry professionals and researchers to build more secure systems by exploiting the noise inherent to communications channels. The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical layer security schemes. Finally, applications to multi-user communications and network coding are also included.

5G Physical Layer

5G Physical Layer PDF

Author: Ali Zaidi

Publisher: Academic Press

Published: 2018-09-22

Total Pages: 322

ISBN-13: 012814579X

DOWNLOAD EBOOK →

5G Physical Layer: Principles, Models and Technology Components explains fundamental physical layer design principles, models and components for the 5G new radio access technology – 5G New Radio (NR). The physical layer models include radio wave propagation and hardware impairments for the full range of frequencies considered for the 5G NR (up to 100 GHz). The physical layer technologies include flexible multi-carrier waveforms, advanced multi-antenna solutions, and channel coding schemes for a wide range of services, deployments, and frequencies envisioned for 5G and beyond. A MATLAB-based link level simulator is included to explore various design options. 5G Physical Layer is very suitable for wireless system designers and researchers: basic understanding of communication theory and signal processing is assumed, but familiarity with 4G and 5G standards is not required. With this book the reader will learn: The fundamentals of the 5G NR physical layer (waveform, modulation, numerology, channel codes, and multi-antenna schemes). Why certain PHY technologies have been adopted for the 5G NR. The fundamental physical limitations imposed by radio wave propagation and hardware impairments. How the fundamental 5G NR physical layer functionalities (e.g., parameters/methods/schemes) should be realized. The content includes: A global view of 5G development – concept, standardization, spectrum allocation, use cases and requirements, trials, and future commercial deployments. The fundamentals behind the 5G NR physical layer specification in 3GPP. Radio wave propagation and channel modeling for 5G and beyond. Modeling of hardware impairments for future base stations and devices. Flexible multi-carrier waveforms, multi-antenna solutions, and channel coding schemes for 5G and beyond. A simulator including hardware impairments, radio propagation, and various waveforms. Ali Zaidi is a strategic product manager at Ericsson, Sweden. Fredrik Athley is a senior researcher at Ericsson, Sweden. Jonas Medbo and Ulf Gustavsson are senior specialists at Ericsson, Sweden. Xiaoming Chen is a professor at Xi’an Jiaotong University, China. Giuseppe Durisi is a professor at Chalmers University of Technology, Sweden, and a guest researcher at Ericsson, Sweden.

Massive MIMO

Massive MIMO PDF

Author: Hien Quoc Ngo

Publisher: Linköping University Electronic Press

Published: 2015-01-16

Total Pages: 69

ISBN-13: 9175191474

DOWNLOAD EBOOK →

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology for next generations of wireless systems. With massive antenna arrays at the BS, for most propagation environments, the channels become favorable, i.e., the channel vectors between the users and the BS are (nearly) pairwisely orthogonal, and hence, linear processing is nearly optimal. A huge throughput and energy efficiency can be achieved due to the multiplexing gain and the array gain. In particular, with a simple power control scheme, Massive MIMO can offer uniformly good service for all users. In this dissertation, we focus on the performance of Massive MIMO. The dissertation consists of two main parts: fundamentals and system designs of Massive MIMO. In the first part, we focus on fundamental limits of the system performance under practical constraints such as low complexity processing, limited length of each coherence interval, intercell interference, and finite-dimensional channels. We first study the potential for power savings of the Massive MIMO uplink with maximum-ratio combining (MRC), zero-forcing, and minimum mean-square error receivers, under perfect and imperfect channels. The energy and spectral efficiency tradeoff is investigated. Secondly, we consider a physical channel model where the angular domain is divided into a finite number of distinct directions. A lower bound on the capacity is derived, and the effect of pilot contamination in this finite-dimensional channel model is analyzed. Finally, some aspects of favorable propagation in Massive MIMO under Rayleigh fading and line-of-sight (LoS) channels are investigated. We show that both Rayleigh fading and LoS environments offer favorable propagation. In the second part, based on the fundamental analysis in the first part, we propose some system designs for Massive MIMO. The acquisition of channel state information (CSI) is very importantin Massive MIMO. Typically, the channels are estimated at the BS through uplink training. Owing to the limited length of the coherence interval, the system performance is limited by pilot contamination. To reduce the pilot contamination effect, we propose an eigenvalue-decomposition-based scheme to estimate the channel directly from the received data. The proposed scheme results in better performance compared with the conventional training schemes due to the reduced pilot contamination. Another important issue of CSI acquisition in Massive MIMO is how to acquire CSI at the users. To address this issue, we propose two channel estimation schemes at the users: i) a downlink "beamforming training" scheme, and ii) a method for blind estimation of the effective downlink channel gains. In both schemes, the channel estimation overhead is independent of the number of BS antennas. We also derive the optimal pilot and data powers as well as the training duration allocation to maximize the sum spectral efficiency of the Massive MIMO uplink with MRC receivers, for a given total energy budget spent in a coherence interval. Finally, applications of Massive MIMO in relay channels are proposed and analyzed. Specifically, we consider multipair relaying systems where many sources simultaneously communicate with many destinations in the same time-frequency resource with the help of a massive MIMO relay. A massive MIMO relay is equipped with many collocated or distributed antennas. We consider different duplexing modes (full-duplex and half-duplex) and different relaying protocols (amplify-and-forward, decode-and-forward, two-way relaying, and one-way relaying) at the relay. The potential benefits of massive MIMO technology in these relaying systems are explored in terms of spectral efficiency and power efficiency.

Inclusive Radio Communications for 5G and Beyond

Inclusive Radio Communications for 5G and Beyond PDF

Author: Claude Oestges

Publisher: Academic Press

Published: 2021-05-18

Total Pages: 396

ISBN-13: 0128205822

DOWNLOAD EBOOK →

Inclusive Radio Communication Networks for 5G and Beyond is based on the COST IRACON project that consists of 500 researchers from academia and industry, with 120 institutions from Europe, US and the Far East involved. The book presents state-of-the-art design and analysis methods for 5G (and beyond) radio communication networks, along with key challenges and issues related to the development of 5G networks. Covers the latest research on 5G networks – including propagation, localization, IoT and radio channels Based on the International COST research project, IRACON, with 120 institutions and 500 researchers from Europe, US and the Far East involved Provides coverage of IoT protocols, architectures and applications, along with IoT applications in healthcare Contains a concluding chapter on future trends in mobile communications and networking

Foundations of User-Centric Cell-Free Massive MIMO

Foundations of User-Centric Cell-Free Massive MIMO PDF

Author: Özlem Tugfe Demir

Publisher:

Published: 2021-01-25

Total Pages: 328

ISBN-13: 9781680837902

DOWNLOAD EBOOK →

Modern day cellular mobile networks use Massive MIMO technology to extend range and service multiple devices within a cell. This has brought tremendous improvements in the high peak data rates that can be handled. Nevertheless, one of the characteristics of this technology is large variations in the quality of service dependent on where the end user is located in any given cell. This becomes increasingly problematic when we are creating a society where wireless access is supposed to be ubiquitous. When payments, navigation, entertainment, and control of autonomous vehicles are all relying on wireless connectivity the primary goal for future mobile networks should not be to increase the peak rates, but the rates that can be guaranteed to the vast majority of the locations in the geographical coverage area. The cellular network architecture was not designed for high-rate data services but for low-rate voice services, thus it is time to look beyond the cellular paradigm and make a clean-slate network design that can reach the performance requirements of the future. This monograph considers the cell-free network architecture that is designed to reach the aforementioned goal of uniformly high data rates everywhere. The authors introduce the concept of a cell-free network before laying out the foundations of what is required to design and build such a network. They cover the foundations of channel estimation, signal processing, pilot assignment, dynamic cooperation cluster formation, power optimization, fronthaul signaling, and spectral efficiency evaluation in uplink and downlink under different degrees of cooperation among the access points and arbitrary linear combining and precoding. This monograph provides the reader with all the fundamental information required to design and build the next generation mobile networks without being hindered by the inherent restrictions of modern cellular-based technology.