Physical and Mathematical Modeling of Earth and Environment Processes

Physical and Mathematical Modeling of Earth and Environment Processes PDF

Author: Vladimir Karev

Publisher: Springer

Published: 2018-03-24

Total Pages: 382

ISBN-13: 3319777882

DOWNLOAD EBOOK →

This book is the result of collaboration within the framework of the Third International Scientific School for Young Scientists held at the Ishlinskii Institute for Problems in Mechanics of Russian Academy of Sciences, 2017, November. The papers included describe studies on the dynamics of natural system – geosphere, hydrosphere, atmosphere—and their interactions, the human contribution to naturally occurring processes, laboratory modeling of earth and environment processes, and testing of new developed physical and mathematical models. The book particularly focuses on modeling in the field of oil and gas production as well as new alternative energy sources.

Physical and Mathematical Modeling of Earth and Environment Processes (2018)

Physical and Mathematical Modeling of Earth and Environment Processes (2018) PDF

Author: V. I. Karev

Publisher: Springer

Published: 2019-03-24

Total Pages: 490

ISBN-13: 303011533X

DOWNLOAD EBOOK →

This book entitled "Physical and Mathematical Modeling of Earth and Environment Processes" is the result of a collaborative work after the 4th international scientific youth forum held at the IPMech RAS on November 1–3, 2018. The book includes theoretical and experimental studies of processes in the atmosphere, oceans, the lithosphere and their interaction; environmental issues; problems of human impact on the environment; methods of geophysical research. A special focus is given to the extraction of hydrocarbon resources, including unconventional sources. This book also focuses on new approaches to the development of hydrocarbon fields, very important in today's geopolitical conditions. The book presents new results of the experimental and theoretical modeling of deformation, fracture and filtration processes in the rocks in connection with issues of creating scientific fundamentals for new hydrocarbon production technologies.

Physical and Mathematical Modeling of Earth and Environment Processes—2022

Physical and Mathematical Modeling of Earth and Environment Processes—2022 PDF

Author: V. I. Karev

Publisher: Springer Nature

Published: 2023-04-18

Total Pages: 626

ISBN-13: 3031259629

DOWNLOAD EBOOK →

The book presents short papers of participants of the 8th International Scientific Conference-School for Young Scientists "Physical and Mathematical Modeling of Earth and Environment Processes" (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences). The book includes theoretical and experimental studies of processes in the atmosphere, oceans, the lithosphere and their interaction; environmental issues; problems of human impact on the environment; methods of geophysical research.

Physical and Mathematical Modeling of Earth and Environment Processes

Physical and Mathematical Modeling of Earth and Environment Processes PDF

Author: V. I. Karev

Publisher: Springer Nature

Published: 2022-05-11

Total Pages: 332

ISBN-13: 3030995046

DOWNLOAD EBOOK →

This book presents short papers of participants of the 7th International Scientific Conference-School for Young Scientists "Physical and Mathematical Modeling of Earth and Environment Processes" (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences). The book includes theoretical and experimental studies of processes in the atmosphere, oceans, the lithosphere, and their interaction; environmental issues; problems of human impact on the environment; and methods of geophysical research.

Physical and Mathematical Modeling of Earth and Environment Processes-2022

Physical and Mathematical Modeling of Earth and Environment Processes-2022 PDF

Author: V. I. Karev

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9783031259630

DOWNLOAD EBOOK →

The book presents short papers of participants of the 8th International Scientific Conference-School for Young Scientists "Physical and Mathematical Modeling of Earth and Environment Processes" (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences). The book includes theoretical and experimental studies of processes in the atmosphere, oceans, the lithosphere and their interaction; environmental issues; problems of human impact on the environment; methods of geophysical research.

Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes

Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes PDF

Author: Vladimir Karev

Publisher: Springer

Published: 2024-05-06

Total Pages: 0

ISBN-13: 9783031545887

DOWNLOAD EBOOK →

This book presents short papers of participants of the 9th International Scientific Conference-School for Young Scientists «Physical and Mathematical Modeling of Earth and Environment Processes. A special focus is given to the extraction of hydrocarbon resources, including from unconventional sources. An alternative to the use of hydrocarbons as a main source of energy on the Planet in the coming decades is unlikely to be found. At the same time, the resource base of hydrocarbons is quickly depleted, in particularly, large and accessible oil and gas fields. The shale oil and gas, Arctic hydrocarbon stocks, gas hydrates, coal bed methane, oil and gas from deep horizons can become new sources. "Deep oil" may be the most promising source of expanding the resource base of hydrocarbons according to many experts. New technologies are required to their development. Efficient low-cost technologies can be created on the basis of geomechanical approach, i.e., through the use of a huge elastic energy stored in the rock massif due to rock pressure. The creation of new breakthrough approaches to the development of hydrocarbon fields is very important in today's geopolitical conditions and requires the involvement of young minds and strength. International activities, including the youth scientific schools, can become an effective tool for exchange of information and the organizing of interdisciplinary research of processes in geo-environment. The book presents the new results of the experimental and theoretical modeling of deformation, fracture, and filtration processes in the rocks in connection to issues of creating scientific fundamentals for new hydrocarbon production technologies. The investigations of the dependence of well stability and permeability of rocks on the stress-strain state in conditions of deep horizons and high rock pressure are also represented.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems PDF

Author: Rudy Slingerland

Publisher: Princeton University Press

Published: 2011-03-28

Total Pages: 246

ISBN-13: 1400839114

DOWNLOAD EBOOK →

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Introduction to Environmental Modeling

Introduction to Environmental Modeling PDF

Author: William G. Gray

Publisher: Cambridge University Press

Published: 2016-12-28

Total Pages: 449

ISBN-13: 1108108105

DOWNLOAD EBOOK →

This textbook presents an understanding of how basic physical descriptions can be translated into mathematical analogues that provide an opportunity to investigate environmental processes. Examples come from a range of hydrologic, atmospheric, and geophysical problems. The emphasis is on simple examples and calculations that add to understanding. The book provides a sense for the meaning of mathematical expressions, a physical feel for their relations to processes, and confidence in working with mathematical solutions. The goal of this book, in essence, is to present the timeless basic physical and mathematical principles and philosophy of environmental modeling, often to students who need to be taught how to think in a different way than they would for more narrowly-defined engineering or physics problems. Minimum prerequisites for the student reader include a knowledge of calculus through differential equations, but the book provides the mathematical and physical tools needed as the occasion arises.

Introduction to Systems Analysis

Introduction to Systems Analysis PDF

Author: Dieter M. Imboden

Publisher: Springer Science & Business Media

Published: 2012-12-14

Total Pages: 256

ISBN-13: 364230639X

DOWNLOAD EBOOK →

Systems and their mathematical description play an important role in all branches of science. This book offers an introduction to mathematical modeling techniques. It is intended for undergrad students in applied natural science, in particular earth and environmental science, environmental engineering, as well as ecology, environmental chemistry, chemical engineering, agronomy, and forestry. The focus is on developing the basic methods of modeling. Students will learn how to build mathematical models of their own, but also how to analyze the properties of existing models. The book neither derives mathematical formulae, nor does it describe modeling software, instead focusing on the fundamental concepts behind mathematical models. A formulary in the appendix summarizes the necessary mathematical knowledge. To support independent learners, numerous examples and problems from various scientific disciplines are provided throughout the book. Thanks in no small part to the cartoons by Nikolas Stürchler, this introduction to the colorful world of modeling is both entertaining and rich in content

MATHEMATICAL MODELS – Volume II

MATHEMATICAL MODELS – Volume II PDF

Author: Jerzy A. Filar

Publisher: EOLSS Publications

Published: 2009-09-19

Total Pages: 510

ISBN-13: 1848262434

DOWNLOAD EBOOK →

Mathematical Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Mathematical Models discusses matters of great relevance to our world such as: Basic Principles of Mathematical Modeling; Mathematical Models in Water Sciences; Mathematical Models in Energy Sciences; Mathematical Models of Climate and Global Change; Infiltration and Ponding; Mathematical Models of Biology; Mathematical Models in Medicine and Public Health; Mathematical Models of Society and Development. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.