Physical Acoustics V2B

Physical Acoustics V2B PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 405

ISBN-13: 0323151949

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume II, Part B: Properties of Polymers and Nonlinear Acoustics presents the applications of the methods for detecting and generating sound waves. This book deals with more closely packed materials than found in liquid, which retain the ability to perform some atomic movements. Comprised of six chapters, this volume starts with an overview of the significant method for measuring nonlinearities in liquids and solids in the light diffraction method. This text then describes the basic generalization of linear viscoelastic theory, which is the only theory with enough power, range, and simplicity to be of use in relating the mechanical properties as a whole. Other chapters consider the phenomena that are observed during time-dependent dilatation of amorphous polymers and discuss the relationship of this behavior to that observed during shearing deformation. The final chapter deals with the distortion of the ultrasonic waveform arising from nonlinearity. Physicists and researchers will find this book useful.

Fundamentals of Physical Acoustics

Fundamentals of Physical Acoustics PDF

Author: David T. Blackstock

Publisher: John Wiley & Sons

Published: 2000-04-24

Total Pages: 576

ISBN-13: 0471319791

DOWNLOAD EBOOK →

AN AUTHORITATIIVE, UP-TO-DATE INTRODUCTION TO PHYSICAL ACOUSTICS Easy to read and understand, Fundamentals of Physical Acoustics fills a long-standing need for an acoustics text that challenges but does not overpower graduate students in engineering and physics. Mathematical results and physical explanations go hand in hand, and a unique feature of the book is the balance it strikes between time-domain and frequency-domain presentations. Fundamentals of Physical Acoustics is intended for a two-semester, first-year graduate course, but is also suitable for advanced undergraduates. Emphasis on plane waves in the first part of the book keeps the mathematics simple yet accommodates a broad range of topics: propagation, reflection and transmission, normal modes and simple waveguides for rectilinear geometries, horns, inhomogeneous media, and sound absorption and dispersion. The second part of the book is devoted to a more rigorous development of the wave equation, spherical and cylindrical waves (including the more advanced mathematics required), advanced waveguides, baffled piston radiation, diffraction (treated in the time domain), and arrays. Applications and examples are drawn from: * Atmospheric acoustics * Noise control * Underwater acoustics * Engineering acoustics * Acoustical measurements Supplemented with more than 300 graphs and figures as well as copious end-of-chapter problems, Fundamentals of Physical Acoustics is also an excellent professional reference for engineers and scientists.

Physical Acoustics V8B

Physical Acoustics V8B PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 357

ISBN-13: 0323154484

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume III—Part B: Lattice Dynamics covers the interaction of acoustic waves with certain motions and wave types in solids that produce changes in their velocity and attenuation. The book discusses various topics in physical acoustics such as the process of determining the Debye temperature; use of measurements of polycrystalline and sintered materials in determining the Debye temperature; sound propagation in the earth and the attenuation mechanisms present for seismic waves; the occurrence of internal friction in strained alkali halide crystals; and the interaction of acoustic waves with magnetic spins. Physicists and geophysicists will find this volume interesting.

Physical Acoustics V15

Physical Acoustics V15 PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 393

ISBN-13: 0323152511

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume XV is a four-chapter text that covers the history of ultrasonics, interdigital transducers, theory of resonance scattering, and acoustic emission. Chapter 1 provides the history of ultrasonics and the developments of its application in crystal transducers, oscillators, selective wave filters, underwater sound, dentistry, and medicine. Chapter 2 is a comprehensive account of the use of circuit model analysis to design interdigital transducers (IDTs) for surface acoustic wave (SAW) devices. This chapter also looks into the total filter design problem for the important case of SAW filters composed solely of IDTs and matching circuits. Chapter 3 discusses the resonance scattering theory, its application to acoustic-and elastic-wave scattering, and the relevant experiments. Chapter 4 deals with the optical detection of acoustic emissions, acoustic emissions during various transformations, and dislocation effects. Researchers in the fields of electronics technology and applied and engineering mechanics will find this book invaluable.

Physical Acoustics V4B

Physical Acoustics V4B PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 513

ISBN-13: 0323147496

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume IV, Part B: Applications to Quantum and Solid State Physics provides an introduction to the various applications of quantum mechanics to acoustics by describing several processes for which such considerations are essential. This book discusses the transmission of sound waves in molten metals. Comprised of seven chapters, this volume starts with an overview of the interactions that can happen between electrons and acoustic waves when magnetic fields are present. This text then describes acoustic and plasma waves in ionized gases wherein oscillations are subject to hydrodynamic as well as electromagnetic forces. Other chapters examine the resonances and relaxations that can take place in polymer systems. This book discusses as well the general theory of the interaction of a weak sinusoidal field with matter. The final chapter describes the sound velocities in the rocks composing the Earth. This book is a valuable resource for physicists and engineers.

Physical Acoustics V12

Physical Acoustics V12 PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 409

ISBN-13: 0323151701

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume XII, covers the fundamental physical phenomena and important engineering applications of physical acoustics. This volume is composed of five chapters, and begins with the presentation of the theoretical concepts and experimental data concerning the role of long-wavelength acoustic phonons in Jahn-Teller phase transitions. The second chapter highlights the use of superconducting tunneling junctions as phonon generators and detectors followed by a discussion on ultrasonic wave propagation in glasses at low temperatures in the third chapter. The fourth chapter explores various integral transform methods for describing the elastic response to acoustic pulsed. These methods include spatial Fourier and/or Bessel transforms the Watson-Sommerfeld transformation or the Poisson summation formula, and the Fourier or Laplace transform for the time behavior. The final chapter outlines the measurement methods for ultrasonic phase and group velocities and attenuation together with their industrial applications.

Physical Acoustics V10

Physical Acoustics V10 PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 416

ISBN-13: 0323151272

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods, Volume X, is a five-chapter text that covers the principles and methods of generation of physical acoustics. The first chapter provides the essential results obtained concerning acoustic surface waves on curved surfaces and relates them to the corresponding plane surface waves. This chapter also presents a classification of surface and lateral waves on flat surfaces along with their properties. The second chapter describes a group of acoustic wave problems that are particularly suitable for study by means of Schlieren visualization. The third chapter deals with the production of ultrasonic waves by direct electromagnetic generation, while type II superconductors, which are useful for superconducting magnets with strong magnetic fields and with high current densities, are investigated in the fourth chapter. The fifth chapter discusses the principles of hologram and its application to very short length electromagnetic waves known as microwaves and to acoustic waves of various wavelengths.

Physical Acoustics V16

Physical Acoustics V16 PDF

Author: Warren P. Mason

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 497

ISBN-13: 0323148190

DOWNLOAD EBOOK →

Physical Acoustics: Principles and Methods reviews the principles and methods of physical acoustics and covers topics ranging from relaxation processes in sound propagation in fluids to acoustic vibrational modes in quartz crystals, along with electron and phonon drag on mobile dislocations in metals at low temperatures. Two-pulse phonon echoes in solid-state acoustics and memory echoes in powders are also discussed. Comprised of seven chapters, this volume begins with a historical account of relaxation processes in sound propagation, followed by an analysis of acoustic vibrational modes in quartz crystals. The reader is then introduced to electron and phonon drag on mobile dislocations at low temperatures, together with two-pulse phonon echoes in solid-state acoustics and dynamic polarization echoes in powdered materials. The book also considers memory echoes in powders before concluding with an evaluation of acousto-optic transduction mechanisms used in fiber optic acoustic sensors, together with their practical implementation. This book will be of interest to physicists.