Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing PDF

Author: Suting Han

Publisher: Woodhead Publishing

Published: 2020-05-26

Total Pages: 352

ISBN-13: 0128226064

DOWNLOAD EBOOK →

Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies. This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices. Reviews the most promising materials to enable emerging computing memory and data storage devices, including one- and two-dimensional materials, metal oxides, semiconductors, organic materials, and more Discusses fundamental mechanisms and design strategies for two- and three-terminal device structures Addresses device challenges and strategies to enable translation of optical and optoelectronic technologies

Advances in Non-volatile Memory and Storage Technology

Advances in Non-volatile Memory and Storage Technology PDF

Author: Yoshio Nishi

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 662

ISBN-13: 0081025858

DOWNLOAD EBOOK →

Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory

Resistive Switching

Resistive Switching PDF

Author: Daniele Ielmini

Publisher: John Wiley & Sons

Published: 2015-12-23

Total Pages: 1010

ISBN-13: 3527680934

DOWNLOAD EBOOK →

With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories. Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text. An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

VLSI-Design of Non-Volatile Memories

VLSI-Design of Non-Volatile Memories PDF

Author: Giovanni Campardo

Publisher: Springer Science & Business Media

Published: 2005-01-18

Total Pages: 616

ISBN-13: 9783540201984

DOWNLOAD EBOOK →

VLSI-Design for Non-Volatile Memories is intended for electrical engineers and graduate students who want to enter into the integrated circuit design world. Non-volatile memories are treated as an example to explain general design concepts. Practical illustrative examples of non-volatile memories, including flash types, are showcased to give insightful examples of the discussed design approaches. A collection of photos is included to make the reader familiar with silicon aspects. Throughout all parts of this book, the authors have taken a practical and applications-driven point of view, providing a comprehensive and easily understood approach to all the concepts discussed. Giovanni Campardo and Rino Micheloni have a solid track record of leading design activities at the STMicroelectronics Flash Division. David Novosel is President and founder of Intelligent Micro Design, Inc., Pittsburg, PA.

Neuromorphic Photonics

Neuromorphic Photonics PDF

Author: Paul R. Prucnal

Publisher: CRC Press

Published: 2017-05-08

Total Pages: 412

ISBN-13: 1498725244

DOWNLOAD EBOOK →

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.

2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies PDF

Author: Zongyu Huang

Publisher: CRC Press

Published: 2022-04-19

Total Pages: 166

ISBN-13: 1000562840

DOWNLOAD EBOOK →

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Chalcogenide-Based Nanomaterials as Photocatalysts

Chalcogenide-Based Nanomaterials as Photocatalysts PDF

Author: Mohammad Mansoob Khan

Publisher: Elsevier

Published: 2021-04-07

Total Pages: 378

ISBN-13: 0128209178

DOWNLOAD EBOOK →

Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. Provides information on the development of novel chalcogenide-based nanomaterials Outlines the fundamentals of chalcogenides-based photocatalysis Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials

Memristor Networks

Memristor Networks PDF

Author: Andrew Adamatzky

Publisher: Springer Science & Business Media

Published: 2013-12-18

Total Pages: 716

ISBN-13: 3319026305

DOWNLOAD EBOOK →

Using memristors one can achieve circuit functionalities that are not possible to establish with resistors, capacitors and inductors, therefore the memristor is of great pragmatic usefulness. Potential unique applications of memristors are in spintronic devices, ultra-dense information storage, neuromorphic circuits and programmable electronics. Memristor Networks focuses on the design, fabrication, modelling of and implementation of computation in spatially extended discrete media with many memristors. Top experts in computer science, mathematics, electronics, physics and computer engineering present foundations of the memristor theory and applications, demonstrate how to design neuromorphic network architectures based on memristor assembles, analyse varieties of the dynamic behaviour of memristive networks and show how to realise computing devices from memristors. All aspects of memristor networks are presented in detail, in a fully accessible style. An indispensable source of information and an inspiring reference text, Memristor Networks is an invaluable resource for future generations of computer scientists, mathematicians, physicists and engineers.

PEDOT

PEDOT PDF

Author: Andreas Elschner

Publisher: CRC Press

Published: 2010-11-02

Total Pages: 380

ISBN-13: 1420069128

DOWNLOAD EBOOK →

While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.

Robotic Tactile Sensing

Robotic Tactile Sensing PDF

Author: Ravinder S. Dahiya

Publisher: Springer Science & Business Media

Published: 2012-07-29

Total Pages: 258

ISBN-13: 9400705794

DOWNLOAD EBOOK →

Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin. With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.