Perspectives in Quantum Hall Effects

Perspectives in Quantum Hall Effects PDF

Author: Sankar Das Sarma

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 444

ISBN-13: 3527617264

DOWNLOAD EBOOK →

The discovery of the quantized and fractional Quantum Hall Effect phenomena is among the most important physics findings in the latter half of this century. The precise quantization of the electrical resistance involved in the quantized Hall effect phenomena has led to the new definition of the resistance standard and has metrologically affected all of science and technology. This resource consists of contributions from the top researchers in the field who present recent experimental and theoretical developments. Each chapter is self-contained and includes its own set of references guiding readers to original papers and further reading on the topic.

Quantum Hall Effects

Quantum Hall Effects PDF

Author: Zyun Francis Ezawa

Publisher: World Scientific Publishing Company

Published: 2013-03-21

Total Pages: 928

ISBN-13: 9814518476

DOWNLOAD EBOOK →

Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. Composite bosons, composite fermions and anyons were among distinguishing ideas in the original edition. In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic Dirac fermions and even the supersymmetric quantum mechanics plays a key role. In this 3rd edition, all chapters are carefully reexamined and updated. A highlight is the new chapter on topological insulators. Indeed, the concept of topological insulator stems from the QHE. Other new topics are recent prominent experimental discoveries in the QHE, provided by the experimentalists themselves in Part V. This new edition presents an instructive and comprehensive overview of the QHE. It is also suitable for an introduction to quantum field theory with vividly described applications. Only knowledge of quantum mechanics is assumed. This book is ideal for students and researchers in condensed matter physics, particle physics, theoretical physics and mathematical physics.

The Quantum Hall Effect

The Quantum Hall Effect PDF

Author: Richard E. Prange

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 487

ISBN-13: 146123350X

DOWNLOAD EBOOK →

After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, including experimentation. The second half of this volume is concerned with the theory of and experiments on the many body problem posed by fractional effect. Specific unsolved problems are mentioned throughout the book and a summary is made in the final chapter. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery.

Quantum Hall Effect

Quantum Hall Effect PDF

Author: Michael Stone

Publisher: World Scientific

Published: 1992

Total Pages: 392

ISBN-13: 9789810208844

DOWNLOAD EBOOK →

This book is a compilation of major reprint articles on one of the most intriguing phenomena in modern physics: the quantum Hall effect. Together with a detailed introduction by the editor, this volume serves as a stimulating and valuable reference for students and research workers in condensed matter physics and for those with a particle physics background. The papers have been chosen with the intention of emphasizing the topological aspects of the quantum Hall effect and its connections with other branches of theoretical physics, such as topological quantum field theories and string theory. The contents include sections on integer effect, fractional effect, effect of global topology, effective theories, edge states and non-Abelian statistics.

Advanced Quantum Condensed Matter Physics

Advanced Quantum Condensed Matter Physics PDF

Author: Michael El-Batanouny

Publisher: Cambridge University Press

Published: 2020-03-26

Total Pages: 839

ISBN-13: 1108480845

DOWNLOAD EBOOK →

Based on an established course, this comprehensive textbook on advanced quantum condensed matter physics covers one-body, many-body and topological perspectives. Discussing modern topics and containing end-of-chapter exercises throughout, it is ideal for graduate students studying advanced condensed matter physics.

The Fractional Quantum Hall Effect

The Fractional Quantum Hall Effect PDF

Author: Tapash Chakraborty

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 186

ISBN-13: 3642971016

DOWNLOAD EBOOK →

The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new struc tures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the ex perimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the two dimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semi conductor materials and devices, especially in the field of two-dimensional electron systems.

Fractional Quantum Hall Effects: New Developments

Fractional Quantum Hall Effects: New Developments PDF

Author: Bertrand I Halperin

Publisher: World Scientific

Published: 2020-06-09

Total Pages: 551

ISBN-13: 9811217505

DOWNLOAD EBOOK →

The fractional quantum Hall effect has been one of the most active areas of research in quantum condensed matter physics for nearly four decades, serving as a paradigm for unexpected and exotic emergent behavior arising from interactions. This book, featuring a collection of articles written by experts and a Foreword by Klaus von Klitzing, the discoverer of quantum Hall effect and winner of 1985 Nobel Prize in physics, aims to provide a coherent account of the exciting new developments and the current status of the field.

Topological Insulators

Topological Insulators PDF

Author: Frank Ortmann

Publisher: John Wiley & Sons

Published: 2015-04-07

Total Pages: 432

ISBN-13: 3527681604

DOWNLOAD EBOOK →

There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic states, the Dirac point, quantum Hall effects and Majorana fermions are illuminated in individual chapters and are described in a clear and logical form. Written by an international team of experts, many of them directly involved in the very first discovery of topological insulators, the book provides the readers with the knowledge they need to understand the electronic behavior of these unique materials. Being more than a reference work, this book is essential for newcomers and advanced researchers working in the field of topological insulators.

The Quantum Hall Effect

The Quantum Hall Effect PDF

Author: Richard E. Prange

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 433

ISBN-13: 1468404997

DOWNLOAD EBOOK →

analyze the Hall effect in the plateau region relative to the fundamental value 2 h/e i expected in the simple one-electron picture for integer filling factors of Landau levels. Subsequent work in my laboratory in Wiirzburg using a super conducting solenoid confirmed the constancy of the Hall resistance both in Dorda's samples and in samples supplied by M. Pepper of the Cavendish Laboratory. With technical assistance from the Physikalisch-Technische Bundesanstalt in Braunschweig, an absolute measurement of the Hall resistance confirmed the 2 fundamental quantization relation RIJ = h/ei to an accuracy of about 1 part in ]05. Recalling the practical applications of the Josephson effect, my initial thinking was oriented toward the idea of a resistance standard, but various groups at national laboratories which are involved in high precision measurements of fun damental constants pointed out that, in addition, the quantized Hall resistance yields a new fundamental measure of the fine structure constant Ci. These then were the initial events which led to the remarkable surge of interest within both the metrology and condensed matter physics communities in quantum transport in inversion layer systems. Subsequent developments have been many and varied and are described in detail in this volume.