Fluorinated Ionomers

Fluorinated Ionomers PDF

Author: Walther Grot

Publisher: William Andrew

Published: 2011-07-15

Total Pages: 312

ISBN-13: 1437744583

DOWNLOAD EBOOK →

Fluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide and potassium hydroxide. The use of fluorinated ionomers such as Nafion® have removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. An essential reference for scientists working with electrolysis and electrochemical processes (the use of this polymer group in industrial chemistry processes is credited with a 1% reduction in global electricity usage) Covers the techniques involved in the growing range of applications for fluorinated ionomers, including fuel cells, batteries and drug delivery The only book on this important polymer group, written by Walther Grot, the inventor of the leading fluorinated ionomer, Nafion® from DuPont

The Chemistry of Membranes Used in Fuel Cells

The Chemistry of Membranes Used in Fuel Cells PDF

Author: Shulamith Schlick

Publisher: John Wiley & Sons

Published: 2018-02-13

Total Pages: 300

ISBN-13: 1119196051

DOWNLOAD EBOOK →

Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and analyze them. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization features chapters on: Fuel Cell Fundamentals: The Evolution of Fuel Cells and their Components; Degradation Mechanism of Perfluorinated Membranes; Ranking the Stability of Perfluorinated Membranes Used in Fuel Cells to Attack by Hydroxyl Radicals; Stabilization Mechanism of Perfluorinated Membranes by Ce(III) and Mn(II); Hydrocarbon Proton Exchange Membranes; Stabilization of Perfluorinated Membranes Using Nanoparticle Additives; Degradation Mechanism in Aquivion Perfluorinated Membranes and Stabilization Strategies; Anion Exchange Membrane Fuel Cells: Synthesis and Stability; In-depth Profiling of Degradation Processes in Nafion Due to Pt Dissolution and Migration into the Membrane; and Quantum Mechanical Calculations of the Degradation Mechanism in Perfluorinated Membranes. Brings together aspects of membrane design, chemical degradation mechanisms and stabilization strategies Emphasizes chemistry of fuel cells, which is underemphasized in other books Includes discussion of fuel cell performance and behavior, analytical profiling methods, and quantum mechanical calculations The Chemistry of Membranes Used in Fuel Cells is an ideal book for polymer scientists, chemists, chemical engineers, electrochemists, material scientists, energy and electrical engineers, and physicists. It is also important for grad students studying advanced polymers and applications.

Polymer Electrolyte Fuel Cell Durability

Polymer Electrolyte Fuel Cell Durability PDF

Author: Felix N. Büchi

Publisher: Springer Science & Business Media

Published: 2009-02-08

Total Pages: 489

ISBN-13: 038785536X

DOWNLOAD EBOOK →

This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.

PEM Water Electrolysis

PEM Water Electrolysis PDF

Author: Dmitri Bessarabov

Publisher: Academic Press

Published: 2018-08-04

Total Pages: 138

ISBN-13: 0081028318

DOWNLOAD EBOOK →

PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies Includes unconventional systems, such as ozone generators Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike

Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells PDF

Author: Javaid Zaidi

Publisher: Springer Science & Business Media

Published: 2010-07-15

Total Pages: 439

ISBN-13: 0387735321

DOWNLOAD EBOOK →

From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

Ion-Containing Polymers

Ion-Containing Polymers PDF

Author: A. Eisenberg

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 304

ISBN-13: 0323156754

DOWNLOAD EBOOK →

Ion-Containing Polymers: Physical Properties and Structure is Volume 2 of the series Polymer Physics. This book aims to fill in the gap in literature regarding the physical aspects of ion-containing polymers. A total of five chapters comprise this book. The Introduction (Chapter 1) generally deals with the application of ion-containing polymers, general classification, and the available works regarding the subject. Chapter 2 establishes the concepts of supermolecular structure and glass transitions in terms of the effects of ionic forces in polymers. These chapters provide the context in the discussion of viscoelastic properties of homopolymers and copolymers in Chapters 3 and 4. Finally, Chapter 5 tackles the configuration-dependent properties of ion-containing polymers. This volume will be of particular help to students in the field of physics and chemistry.

Ionomers

Ionomers PDF

Author: Shulamith Schlick

Publisher: CRC Press

Published: 1996-01-15

Total Pages: 326

ISBN-13: 9780849376481

DOWNLOAD EBOOK →

The molecular structure and composition of ionomers lead to a complex superposition of properties of organic chains and of polyelectrolytes. The potential use of this class of polymers in applications such as surfactants, ion selective membranes in electrochemical processes, coatings, fuel cells and batteries has sparked a vast amount of research.

Theory and Modeling of Polymer Nanocomposites

Theory and Modeling of Polymer Nanocomposites PDF

Author: Valeriy V. Ginzburg

Publisher: Springer Nature

Published: 2020-12-16

Total Pages: 330

ISBN-13: 3030604438

DOWNLOAD EBOOK →

This edited volume brings together the state of the art in polymer nanocomposite theory and modeling, creating a roadmap for scientists and engineers seeking to design new advanced materials. The book opens with a review of molecular and mesoscale models predicting equilibrium and non-equilibrium nanoscale structure of hybrid materials as a function of composition and, especially, filler types. Subsequent chapters cover the methods and analyses used for describing the dynamics of nanocomposites and their mechanical and physical properties. Dedicated chapters present best practices for predicting materials properties of practical interest, including thermal and electrical conductivity, optical properties, barrier properties, and flammability. Each chapter is written by leading academic and industrial scientists working in each respective sub-field. The overview of modeling methodology combined with detailed examples of property predictions for specific systems will make this book useful for academic and industrial practitioners alike.