Particle-Based Methods

Particle-Based Methods PDF

Author: Eugenio Oñate

Publisher: Springer Science & Business Media

Published: 2011-02-17

Total Pages: 275

ISBN-13: 9400707355

DOWNLOAD EBOOK →

The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.

Particle-Based Methods

Particle-Based Methods PDF

Author: Eugenio Oñate

Publisher: Springer

Published: 2014-03-21

Total Pages: 268

ISBN-13: 9789400735378

DOWNLOAD EBOOK →

The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.

Moving Particle Semi-implicit Method

Moving Particle Semi-implicit Method PDF

Author: Seiichi Koshizuka

Publisher: Academic Press

Published: 2018-06-01

Total Pages: 306

ISBN-13: 0128128372

DOWNLOAD EBOOK →

Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics begins by familiarizing the reader with basic theory that supports their journey through sections on advanced MPH methods. The unique insights that this method provides include fluid-structure interaction, non-Newtonian flow, and cavitation, making it relevant to a wide range of applications in the mechanical, structural, and nuclear industries, and in bioengineering. Co-authored by the originator of the MPS method, this book is the most authoritative guide available. It will be of great value to students, academics and researchers in industry. Presents the differences between MPH and SPH, helping readers choose between methods for different purposes Provides pieces of computer code that readers can use in their own simulations Includes the full, extended algorithms Explores the use of MPS in a range of industries and applications, including practical advice

Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics PDF

Author: Gui-Rong Liu

Publisher: World Scientific

Published: 2003

Total Pages: 473

ISBN-13: 9812384561

DOWNLOAD EBOOK →

This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.

The Material Point Method

The Material Point Method PDF

Author: Xiong Zhang

Publisher: Academic Press

Published: 2016-10-26

Total Pages: 300

ISBN-13: 0124078559

DOWNLOAD EBOOK →

The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems. Provides a user’s guide and several numerical examples of the MPM3D-F90 code that can be downloaded from a website Presents models that describe different types of material behaviors, with a focus on extreme events. Includes applications of MPM and its extensions in extreme events, such as transient crack propagation, impact/penetration, blast, fluid-structure interaction, and biomechanical responses to extreme loading

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems PDF

Author: Georg-Peter Ostermeyer

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030601256

DOWNLOAD EBOOK →

This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.

Particle Methods for Multi-Scale and Multi-physics

Particle Methods for Multi-Scale and Multi-physics PDF

Author: Moubin E. T. Al LIU

Publisher: World Scientific

Published: 2015-12-28

Total Pages: 400

ISBN-13: 9814571709

DOWNLOAD EBOOK →

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

Particle Methods for Multi-Scale and Multi-Physics

Particle Methods for Multi-Scale and Multi-Physics PDF

Author: M B Liu

Publisher: World Scientific

Published: 2015-12-28

Total Pages: 400

ISBN-13: 9814571717

DOWNLOAD EBOOK →

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences. Contents:IntroductionMolecular DynamicsDissipative Particle Dynamics — MethodologyDissipative Particle Dynamics — ApplicationsSmoothed Particle Hydrodynamics — MethodologySmoothed Particle Hydrodynamics — ApplicationsThree Typical Particle Methods Readership: Undergraduates, graduates, researchers, and professionals studying/dealing with fluid mechanics, numerical analysis and computational mathematics, engineering mechanics, ocean engineering, mechanical engineering. Key Features:The authors have many years of experience in meshfree and particle methods, and are renowned scientists in related areas, with highly cited publications. This can greatly attracts fellow researchers from all around the world to probe the latest development on current major particle methodsThe authors have authored numerous technical publications, and many popular books. They truly understand what the fellow researchers think and wantThe authors have extensive network in academics and research. It is comparatively easy to introduce the book to professional organizations, international conferences, and different academic bodies such as universities and research institutesKeywords:Computer Modeling;Numerical Methods;Meshfree Particle Methods;Smoothed Particle Hydrodynamics;Dissipative Particle Dynamics;Molecular Dynamics

Guide to Dynamic Simulations of Rigid Bodies and Particle Systems

Guide to Dynamic Simulations of Rigid Bodies and Particle Systems PDF

Author: Murilo G. Coutinho

Publisher: Springer Science & Business Media

Published: 2012-10-08

Total Pages: 402

ISBN-13: 1447144171

DOWNLOAD EBOOK →

This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. The text focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines. Each chapter examines numerous algorithms, describing their design and analysis in an accessible manner, without sacrificing depth of coverage or mathematical rigor. Features: examines the problem of computing an hierarchical representation of the geometric description of each simulated object, as well as the simulated world; discusses the use of discrete and continuous collision detection to handle thin or fast-moving objects; describes the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts; presents techniques that can be used to dynamically simulate articulated rigid bodies; concludes each chapter with exercises.