Partial Differential Equations Arising from Physics and Geometry

Partial Differential Equations Arising from Physics and Geometry PDF

Author: Mohamed Ben Ayed

Publisher: Cambridge University Press

Published: 2019-04-30

Total Pages:

ISBN-13: 1108369499

DOWNLOAD EBOOK →

In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.

Partial Differential Equations Arising from Physics and Geometry

Partial Differential Equations Arising from Physics and Geometry PDF

Author:

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.

Partial Differential Equations I

Partial Differential Equations I PDF

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 673

ISBN-13: 144197055X

DOWNLOAD EBOOK →

The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Partial Differential Equations

Partial Differential Equations PDF

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 1996-06-25

Total Pages: 590

ISBN-13: 9780387946542

DOWNLOAD EBOOK →

This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations. Companion texts, which take the theory of partial differential equations further, are AMS volume 116, treating more advanced topics in linear PDE, and AMS volume 117, treating problems in nonlinear PDE. This book is addressed to graduate students in mathematics and to professional mathematicians, with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Partial Differential Equations III

Partial Differential Equations III PDF

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 734

ISBN-13: 1441970495

DOWNLOAD EBOOK →

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis

Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics PDF

Author: Isaak Rubinstein

Publisher: Cambridge University Press

Published: 1998-04-28

Total Pages: 704

ISBN-13: 9780521558464

DOWNLOAD EBOOK →

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Geometry in Partial Differential Equations

Geometry in Partial Differential Equations PDF

Author: Agostino Prastaro

Publisher: World Scientific

Published: 1994

Total Pages: 482

ISBN-13: 9789810214074

DOWNLOAD EBOOK →

This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Partial Differential Equations III

Partial Differential Equations III PDF

Author: Michael E. Taylor

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 774

ISBN-13: 3031339282

DOWNLOAD EBOOK →

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. The third edition further expands the material by incorporating new theorems and applications throughout the book, and by deepening connections and relating concepts across chapters. It includes new sections on rigid body motion, on probabilistic results related to random walks, on aspects of operator theory related to quantum mechanics, on overdetermined systems, and on the Euler equation for incompressible fluids. The appendices have also been updated with additional results, ranging from weak convergence of measures to the curvature of Kahler manifolds. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.” (Peter Lax, SIAM review, June 1998)

Partial Differential Equations

Partial Differential Equations PDF

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK →

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.