The Prevention and Treatment of Missing Data in Clinical Trials

The Prevention and Treatment of Missing Data in Clinical Trials PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2010-12-21

Total Pages: 163

ISBN-13: 030918651X

DOWNLOAD EBOOK →

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Basic Methods Handbook for Clinical Orthopaedic Research

Basic Methods Handbook for Clinical Orthopaedic Research PDF

Author: Volker Musahl

Publisher: Springer

Published: 2019-03-01

Total Pages: 0

ISBN-13: 9783662582534

DOWNLOAD EBOOK →

This book is designed to meet the needs of both novice and senior researchers in Orthopaedics by providing the essential, clinically relevant knowledge on research methodology that is sometimes overlooked during training. Readers will find a wealth of easy-to-understand information on all relevant aspects, from protocol design, the fundamentals of statistics, and the use of computer-based tools through to the performance of clinical studies with different levels of evidence, multicenter studies, systematic reviews, meta-analyses, and economic health care studies. A key feature is a series of typical case examples that will facilitate use of the volume as a handbook for most common research approaches and study types. Younger researchers will also appreciate the guidance on preparation of abstracts, poster and paper presentations, grant applications, and publications. The authors are internationally renowned orthopaedic surgeons with extensive research experience and the book is published in collaboration with ISAKOS.

Small Clinical Trials

Small Clinical Trials PDF

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2001-01-01

Total Pages: 221

ISBN-13: 0309171148

DOWNLOAD EBOOK →

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide PDF

Author: Agency for Health Care Research and Quality (U.S.)

Publisher: Government Printing Office

Published: 2013-02-21

Total Pages: 204

ISBN-13: 1587634236

DOWNLOAD EBOOK →

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Sharing Clinical Trial Data

Sharing Clinical Trial Data PDF

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2015-04-20

Total Pages: 304

ISBN-13: 0309316324

DOWNLOAD EBOOK →

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research--from funders, to researchers, to journals, to physicians, and ultimately, to patients.

Neuroscience Trials of the Future

Neuroscience Trials of the Future PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-07

Total Pages: 111

ISBN-13: 0309442583

DOWNLOAD EBOOK →

On March 3-4, 2016, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop in Washington, DC, bringing together key stakeholders to discuss opportunities for improving the integrity, efficiency, and validity of clinical trials for nervous system disorders. Participants in the workshop represented a range of diverse perspectives, including individuals not normally associated with traditional clinical trials. The purpose of this workshop was to generate discussion about not only what is feasible now, but what may be possible with the implementation of cutting-edge technologies in the future.

Modern Methods of Clinical Investigation

Modern Methods of Clinical Investigation PDF

Author: Institute of Medicine

Publisher: National Academies Press

Published: 1990-02-01

Total Pages: 241

ISBN-13: 0309042860

DOWNLOAD EBOOK →

The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.

Registries for Evaluating Patient Outcomes

Registries for Evaluating Patient Outcomes PDF

Author: Agency for Healthcare Research and Quality/AHRQ

Publisher: Government Printing Office

Published: 2014-04-01

Total Pages: 396

ISBN-13: 1587634333

DOWNLOAD EBOOK →

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.

Evolution of Translational Omics

Evolution of Translational Omics PDF

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2012-09-13

Total Pages: 354

ISBN-13: 0309224187

DOWNLOAD EBOOK →

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.