Organic Scintillators and Scintillation Counting

Organic Scintillators and Scintillation Counting PDF

Author: Donald Horrocks

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 1095

ISBN-13: 0323141765

DOWNLOAD EBOOK →

Organic Scintillation and Liquid Scintillation Counting covers the proceeding of The International Conference on Organic Scintillators and Liquid Scintillation Counting, which was held on July 7-10, 1970 at the University of California, San Francisco. This conference was held to discuss ideas concerned with the theory and physics of organic scintillators and the use of liquid scintillation for radioactivity measurement and other analytical applications. This text discusses liquid scintillator solvents, the vacuum ultraviolet excited luminescence of organic systems, and the application of scintillation counters to the assay of bioluminescence. Also covered are topics such as scintillation decay and absolute efficiencies in organic liquid scintillators, dose rate saturation in plastic scintillators, and the mass measurements in a liquid scintillation spectrometer. The book is recommended for physicists who would like to know more about the advancements in the field of organic and liquid scintillation and its applications.

Liquid Scintillation Counting and Organic Scintillators

Liquid Scintillation Counting and Organic Scintillators PDF

Author: Harley Ross

Publisher: CRC Press

Published: 1991-04-01

Total Pages: 752

ISBN-13: 9780873712460

DOWNLOAD EBOOK →

Proceedings of the 1989 international conference, this book is excellent coverage of new trends and established methods in the field of liquid scintillation counting and organic scintillators. Any scientist working with scintillators will find this book valuable.

The Theory and Practice of Scintillation Counting

The Theory and Practice of Scintillation Counting PDF

Author: J. B. Birks

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 685

ISBN-13: 1483156060

DOWNLOAD EBOOK →

The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.

Applications of Liquid Scintillation Counting

Applications of Liquid Scintillation Counting PDF

Author: Donald Horrocks

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 363

ISBN-13: 0323154131

DOWNLOAD EBOOK →

Applications of Liquid Scintillation Counting deals with liquid scintillation counting and its applications in fields such as the biosciences, medicine, environmental and space sciences, chemistry, and physics. These applications include dual-labeled counting; Cerenkov counting; radioimmunoassay, chemiluminescence and bioluminescence; pulse shape discrimination; flow cell counting; and large-volume counters. This book is comprised of 18 chapters and begins with a historical overview of the liquid scintillation method, the first liquid scintillation counters, and early scintillator solutes. The following chapters focus on the theory of liquid scintillation counting; the components of the liquid scintillator solution; and the development of the liquid scintillation counter and multiplier phototubes. The discussion then turns to the detection and measurement of different types of particles produced by radionuclides using liquid scintillation techniques; the techniques and problems of sample preparations (homogeneous and heterogeneous); oxidation techniques; and importance and difference of several types of counting vials. The sources of quenching in counting samples and methods of monitoring and correction for variable quench within samples are also considered. Several special applications of liquid scintillation techniques are presented, including dual-labeled counting, radioimmunoassay, and flow cell counting. In conclusion, the statistical considerations involved in determining the reliability and accuracy of data obtained by nuclear counting techniques are highlighted. This monograph will serve as a reliable source of information for those who are already using or starting to use liquid scintillation counting techniques.