Organic Light-Emitting Materials and Devices

Organic Light-Emitting Materials and Devices PDF

Author: Zhigang Rick Li

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 813

ISBN-13: 1439882800

DOWNLOAD EBOOK →

Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.

OLED Fundamentals

OLED Fundamentals PDF

Author: Daniel J. Gaspar

Publisher: CRC Press

Published: 2015-05-15

Total Pages: 494

ISBN-13: 1466515198

DOWNLOAD EBOOK →

A Comprehensive Source for Taking on the Next Stage of OLED R&D OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and manufacturing factors. Experts from top academic institutions, industry, and national laboratories provide thorough, up-to-date coverage on the most useful materials, devices, and design and fabrication methods for high-efficiency lighting. The first part of the book covers all the construction materials of OLED devices, from substrate to encapsulation. For the first time in book form, the second part addresses challenges in devices and processing, including architectures and methods for new OLED lighting and display technologies. The book is suitable for a broad audience, including materials scientists, device physicists, synthetic chemists, and electrical engineers. It can also serve as an introduction for graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films.

Organic Light-Emitting Materials and Devices

Organic Light-Emitting Materials and Devices PDF

Author: Zhigang Li

Publisher: CRC Press

Published: 2006-09-12

Total Pages: 692

ISBN-13: 1420017063

DOWNLOAD EBOOK →

New advances offer flexible, low-cost fabrication methods for light-emitting materials, particularly in display technologies. As researchers continue to develop novel applications for these materials, feasible solutions for large-scale manufacturing are increasingly important. Organic Light-Emitting Materials and Devices covers all aspects o

Organic Light Emitting Diodes

Organic Light Emitting Diodes PDF

Author: Luiz F. R. Pereira

Publisher: CRC Press

Published: 2012-05-29

Total Pages: 366

ISBN-13: 9814267295

DOWNLOAD EBOOK →

This book addresses the development of OLEDs based on rare-earth and transition metal complexes, especially focusing on europium, terbium, ruthenium, and rhenium. The idea is to explain how these organic materials can be used to build OLEDs. Taking into account the actual state of the art and the expected pathways, the book proposes further developments in the field. It presents intensive experimental results for a better explanation. This book is meant for scientists and engineers who work in this new OLED framework. It also has didactic utility for graduation students and teachers working on optoelectronics.

A New Generation of Organic Light-Emitting Materials and Devices

A New Generation of Organic Light-Emitting Materials and Devices PDF

Author: Shi-Jian Su

Publisher: Frontiers Media SA

Published: 2019-11-27

Total Pages: 144

ISBN-13: 288963163X

DOWNLOAD EBOOK →

Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.

Introduction to Organic Electronic and Optoelectronic Materials and Devices

Introduction to Organic Electronic and Optoelectronic Materials and Devices PDF

Author: Sam-Shajing Sun

Publisher: CRC Press

Published: 2016-10-03

Total Pages: 1069

ISBN-13: 1466585110

DOWNLOAD EBOOK →

This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.

Oled Fundamentals

Oled Fundamentals PDF

Author: Daniel J. Gaspar

Publisher: CRC Press

Published: 2018-04-30

Total Pages: 456

ISBN-13: 9781138893962

DOWNLOAD EBOOK →

A Comprehensive Source for Taking on the Next Stage of OLED R&D OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and manufacturing factors. Experts from top academic institutions, industry, and national laboratories provide thorough, up-to-date coverage on the most useful materials, devices, and design and fabrication methods for high-efficiency lighting. The first part of the book covers all the construction materials of OLED devices, from substrate to encapsulation. For the first time in book form, the second part addresses challenges in devices and processing, including architectures and methods for new OLED lighting and display technologies. The book is suitable for a broad audience, including materials scientists, device physicists, synthetic chemists, and electrical engineers. It can also serve as an introduction for graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films.

Organic Light Emitting Devices

Organic Light Emitting Devices PDF

Author: Klaus Müllen

Publisher: John Wiley & Sons

Published: 2006-05-12

Total Pages: 426

ISBN-13: 3527607234

DOWNLOAD EBOOK →

This high-class book reflects a decade of intense research, culminating in excellent successes over the last few years. The contributions from both academia as well as the industry leaders combine the fundamentals and latest research results with application know-how and examples of functioning displays. As a result, all the four important aspects of OLEDs are covered: - syntheses of the organic materials - physical theory of electroluminescence and device efficiency - device conception and construction - characterization of both materials and devices. The whole is naturally rounded off with a look at what the future holds in store. The editor, Klaus Muellen, is director of the highly prestigious MPI for polymer research in Mainz, Germany, while the authors include Nobel Laureate Alan Heeger, one of the most notable founders of the field, Richard Friend, as well as Ching Tang, Eastman Kodak's number-one OLED researcher, known throughout the entire community for his key publications.